YOLOV5检测自己训练的数据集

简介: YOLOV5检测自己训练的数据集

1、训练好后,会提示权重保存文件,如下图所示:


421f7e6718559ebe6e2f2c7f2d9dd72c.png


2、接着找到最好的权重,如下图所示:


f5b9ab94715067b583505a0b7467c174.png


3、接着找到detect.py,如下图所示:


475440d7e95bd8d0c4b68d4c2b2453b7.png


4、接着将权重路径传入到推理函数中,如下所示:


a4d6755c69d27bdf8eee94b882000b72.png


5、接着待检测图片路径,如下图所示:


b26c615e3addfc048278074069e7220b.png


6、最后运行detect.py即可,如下图所示:


1633f03d8004b1401b79f0c093db9c62.png


上文如有错误,恳请各位大佬指正。


相关文章
|
10月前
|
机器学习/深度学习 PyTorch TensorFlow
YOLOv11改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务
YOLOv11改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务
509 12
YOLOv11改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务
|
10月前
|
机器学习/深度学习 文件存储 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
1100 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
|
数据采集 数据处理 计算机视觉
4.3 图像分类ResNet实战:眼疾识别
这篇文章介绍了使用ResNet网络进行眼疾识别的实战流程,涵盖了计算机视觉任务研发的全流程,包括数据处理、数据预处理、数据读取器的定义,以及如何利用iChallenge-PM数据集进行模型训练和评估。
|
数据处理 算法框架/工具 计算机视觉
手把手教你使用YOLOV5训练自己的目标检测模型
本教程由肆十二(dejahu)撰写,详细介绍了如何使用YOLOV5训练口罩检测模型,涵盖环境配置、数据标注、模型训练、评估与使用等环节,适合大作业及毕业设计参考。提供B站视频、CSDN博客及代码资源链接,便于学习实践。
5218 1
手把手教你使用YOLOV5训练自己的目标检测模型
|
并行计算 计算机视觉
yolov5的detect.py的详细讲解
这篇文章详细讲解了YOLOv5的`detect.py`脚本中的参数,包括模型权重、输入源、图像尺寸、置信度阈值、IOU阈值、设备选择、结果显示、结果保存等,以及如何使用这些参数进行目标检测。
770 1
|
机器学习/深度学习 数据可视化 自动驾驶
YOLO11-seg分割如何训练自己的数据集(道路缺陷)
本文介绍了如何使用自己的道路缺陷数据集训练YOLOv11-seg模型,涵盖数据集准备、模型配置、训练过程及结果可视化。数据集包含4029张图像,分为训练、验证和测试集。训练后,模型在Mask mAP50指标上达到0.673,展示了良好的分割性能。
5561 4
|
计算机视觉 索引
YOLOv5的Tricks | 【Trick14】YOLOv5的val.py脚本的解析
YOLOv5的Tricks | 【Trick14】YOLOv5的val.py脚本的解析
1778 0
YOLOv5的Tricks | 【Trick14】YOLOv5的val.py脚本的解析
|
机器学习/深度学习 编解码 计算机视觉
【保姆级教程|YOLOv8改进】【6】快速涨点,SPD-Conv助力低分辨率与小目标检测
【保姆级教程|YOLOv8改进】【6】快速涨点,SPD-Conv助力低分辨率与小目标检测
|
机器学习/深度学习 人工智能 物联网
基于YOLOv8深度学习的苹果叶片病害智能诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战
基于YOLOv8深度学习的苹果叶片病害智能诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战
|
Java Nacos Spring
SpringCloud之LoadBalancer负载均衡器的简单使用
RoundRobin: 轮询策略,意思循环往复的的服务进行选取。
1230 0