m基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输matlab仿真,输出误码率曲线,并用实际图片进行测试

简介: m基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输matlab仿真,输出误码率曲线,并用实际图片进行测试

1.算法仿真效果
matlab2022a仿真结果如下:

75ae6cfbcde758ab104c94db55dc0bcf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
2662a2fde973ef92b0036844c3987587_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
f05bb99ed027a3505ede1b921ad1994b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
dc94a04661dc9d20130ebc0a9d92832d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输"是一种无线通信系统,它利用正交频分复用(OFDM)和四相位偏移键控(QPSK)技术来传输图像数据,并借助深度神经网络(DNN)来进行信道估计,从而提高信号传输的可靠性和效率。

   OFDM是一种常用的多载波调制技术,它将高速数据流分为多个低速子载波,并使每个子载波之间正交,从而提高频谱利用率和抗干扰能力。QPSK是一种常见的调制方式,它将每两个比特映射为一个复数信号点,每个信号点对应四个相位(0°、90°、180°、270°)。无线图像传输系统由发送端和接收端组成。发送端将图像数据转换为比特流,然后采用QPSK调制和OFDM技术将比特流映射到不同的子载波上,生成OFDM符号序列。接收端接收OFDM符号序列,并利用DNN进行信道估计,根据估计得到的信道状态信息对接收信号进行解调和解调制,最终恢复出原始图像数据。

c08d2b0283a4c44e97cb2a1426ce1df0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   DNN是一种深度学习模型,用于从接收信号中学习信道特征。DNN的输入是接收信号的采样值,输出是对应的信道状态信息。训练DNN需要使用已知信道状态信息的样本,通过梯度下降等优化算法来调整DNN的参数,使其能够准确地估计信道状态信息。 

实现过程

图像编码:将图像数据转换为比特流。

QPSK调制:将比特流映射为QPSK符号。

OFDM调制:将QPSK符号映射到不同的OFDM子载波上,生成OFDM符号序列。

信道传输:通过无线信道传输OFDM符号序列,引入噪声和衰落。

接收和采样:接收端对信号进行采样,得到接收信号的采样值。

DNN信道估计:使用已知信道状态信息的样本训练DNN模型,得到信道估计模型。

信道估计:利用DNN模型对接收信号进行信道估计,得到信道状态信息。

解调和解码:根据信道状态信息对接收信号进行解调和解码,恢复出原始图像数据。

3.MATLAB核心程序

clear;
close all;
warning off;
addpath 'func\'
Ttrain  = load('T_train.mat'); 

Ptrain2 = [];
Ttrain2 = [];

for i = 1
    for j = 1:1
        Ptrain = load(['P_train',num2str(i),'_',num2str(j),'.mat']);   
        Ptrain2 = [Ptrain2;Ptrain.Ch_feature  ];
        Ttrain2 = [Ttrain2;Ttrain.Ch_feature  ];
    end
end

%输入层权值和偏移值
WI     = rand(size(Ttrain2))/1000;
BI     = rand(size(Ttrain2))/1000;
%定义4个隐含层
W1     = rand(size(Ttrain2));
BI1    = rand(size(Ttrain2));
W2     = rand(size(Ttrain2)/2);
BI2    = rand(size(Ttrain2)/2);
%输出层
WO     = rand(size(Ttrain2)/2);
BO     = rand(size(Ttrain2)/2);
%学习率
Lr     = 0.0005;
%迭代次数
Iter   = 2000;

for  it = 1:Iter
     it
     %训练
     tmps1  = Ptrain2.*WI+BI;
     tmps2  = tmps1.*W1+BI1;  
     %激活的
     tmps2_ = [];
     tmps2_ = func_ReLu(tmps2);

     tmps3  = tmps2_(1:2:end,1:2:end).*W2+BI2; 
     tmps4  = tmps3.*WO+BO;             
     error  = (Ttrain2(1:2:end,1:2:end)-tmps4);

     %更新权值
     W1     = W1 + Lr*repmat(error,2,2);
     BI1    = BI1+ Lr*repmat(error,2,2);
     W2     = W2 + Lr*error;
     BI2    = BI2+ Lr*error;
     %输出层
     WO     = WO + Lr*error;
     BO     = BO + Lr*error;
     errors(it) = mean2(abs(error));
end

figure;
plot(errors,'b','linewidth',2);
grid on
xlabel('训练次数');
ylabel('训练误差');

save dl0.mat errors WI BI W1 BI1 W2 BI2 WO BO
相关文章
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的USB摄像头实时视频采集与水果识别matlab仿真
本项目展示了使用MATLAB 2022a和USB摄像头识别显示器上不同水果图片的算法。通过预览图可见其准确识别效果,完整程序无水印。项目采用GoogleNet(Inception-v1)深度卷积神经网络,利用Inception模块捕捉多尺度特征。代码含详细中文注释及操作视频,便于理解和使用。
|
3月前
|
机器学习/深度学习 监控 算法
基于深度学习网络的人员行为视频检测系统matlab仿真,带GUI界面
本仿真展示了基于GoogLeNet的人员行为检测系统在Matlab 2022a上的实现效果,无水印。GoogLeNet采用创新的Inception模块,高效地提取视频中人员行为特征并进行分类。核心程序循环读取视频帧,每十帧执行一次分类,最终输出最频繁的行为类别如“乐队”、“乒乓球”等。此技术适用于智能监控等多个领域。
70 4
|
3月前
|
机器学习/深度学习 数据采集 算法
基于深度学习网络的USB摄像头实时视频采集与火焰检测matlab仿真
本项目使用MATLAB2022a实现基于YOLOv2的火焰检测系统。通过USB摄像头捕捉火焰视频,系统实时识别并标出火焰位置。核心流程包括:视频采集、火焰检测及数据预处理(图像标准化与增强)。YOLOv2模型经特定火焰数据集训练,能快速准确地识别火焰。系统含详细中文注释与操作指南,助力快速上手。
|
5月前
|
机器学习/深度学习 算法 计算机视觉
基于深度学习网络的USB摄像头实时视频采集与人脸检测matlab仿真
**摘要 (Markdown格式):** ```markdown - 📹 使用USB摄像头(Tttttttttttttt666)实时视频检测,展示基于YOLOv2在MATLAB2022a的实施效果: ``` Tttttttttttttt1111111111------------5555555555 ``` - 📺 程序核心利用MATLAB视频采集配置及工具箱(Dddddddddddddd),实现图像采集与人脸定位。 - 🧠 YOLOv2算法概览:通过S×S网格预测边界框(B个/网格),含坐标、类别概率和置信度,高效检测人脸。
|
4月前
|
算法
基于Dijkstra算法的最优行驶路线搜索matlab仿真,以实际城市复杂路线为例进行测试
使用MATLAB2022a实现的Dijkstra算法在城市地图上搜索最优行驶路线的仿真。用户通过鼠标点击设定起点和终点,算法规划路径并显示长度。测试显示,尽管在某些复杂情况下计算路径可能与实际有偏差,但多数场景下Dijkstra算法能找到接近最短路径。核心代码包括图的显示、用户交互及Dijkstra算法实现。算法基于图论,不断更新未访问节点的最短路径。测试结果证明其在简单路线及多数复杂城市路况下表现良好,但在交通拥堵等特殊情况下需结合其他数据提升准确性。
|
5月前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
108 8
|
5月前
|
机器学习/深度学习 算法 固态存储
m基于深度学习的卫星遥感图像轮船检测系统matlab仿真,带GUI操作界面
在MATLAB 2022a中,使用GoogLeNet对卫星遥感图像进行轮船检测,展示了高效的目标识别。GoogLeNet的Inception架构结合全局平均池化增强模型泛化性。核心代码将图像切块并分类,预测为轮船的部分被突出显示,体现了深度学习在复杂场景检测中的应用。
403 8
|
5月前
|
算法 计算机视觉 异构计算
基于FPGA的图像一维FFT变换IFFT逆变换verilog实现,包含tb测试文件和MATLAB辅助验证
```markdown ## FPGA 仿真与 MATLAB 显示 - 图像处理的 FFT/IFFT FPGA 实现在 Vivado 2019.2 中仿真,结果通过 MATLAB 2022a 展示 - 核心代码片段:`Ddddddddddddddd` - 理论:FPGA 实现的一维 FFT/IFFT,加速数字信号处理,适用于高计算需求的图像应用,如压缩、滤波和识别 ```
|
4月前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。
|
5月前
|
算法 计算机视觉 异构计算
基于FPGA的图像直方图均衡化处理verilog实现,包含tb测试文件和MATLAB辅助验证
摘要: 在FPGA上实现了图像直方图均衡化算法,通过MATLAB2022a与Vivado2019.2进行仿真和验证。核心程序涉及灰度直方图计算、累积分布及映射变换。算法旨在提升图像全局对比度,尤其适合低对比度图像。FPGA利用可编程增益器和查表技术加速硬件处理,实现像素灰度的均匀重分布,提升视觉效果。![image preview](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_a075525027db4afbb9c0529921fd0152.png)

热门文章

最新文章

下一篇
无影云桌面