深入理解SpaCy:中级指南

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 在初级教程中,我们介绍了SpaCy库的一些基本特性和功能。在这篇中级指南中,我们将深入学习一些更高级的特性,包括词向量、依赖性解析、和自定义组件。

在初级教程中,我们介绍了SpaCy库的一些基本特性和功能。在这篇中级指南中,我们将深入学习一些更高级的特性,包括词向量、依赖性解析、和自定义组件。

一、词向量

SpaCy库支持词向量,也称为Word Vectors或Word Embeddings,这是一种使用神经网络将词语映射到多维空间的技术,词语的语义相似度可以通过它们的向量的空间距离来衡量。

加载包含词向量的模型:

nlp = spacy.load('en_core_web_md')

获取词向量:

tokens = nlp("dog cat banana")

for token in tokens:
    print(token.text, token.has_vector, token.vector_norm, token.is_oov)

计算词语相似度:

tokens = nlp("dog cat banana")

for token1 in tokens:
    for token2 in tokens:
        print(token1.text, token2.text, token1.similarity(token2))

二、依赖性解析

依赖性解析是识别句子中各个词语之间的依赖关系的过程。SpaCy能够识别句子的句法结构,并提供了可视化的工具。

from spacy import displacy

doc = nlp("This is a sentence.")
displacy.serve(doc, style='dep')

三、自定义组件

SpaCy允许你添加自定义的处理组件,这些组件将会被加入到处理管道中,你可以使用它们对文档进行各种各样的处理。

下面的例子展示了如何添加一个自定义的组件,这个组件会在每个词后面添加一个感叹号:

def add_exclamation(doc):
    for token in doc:
        token.text += "!"
    return doc

nlp.add_pipe(add_exclamation, before='ner')
doc = nlp("This is a sentence.")
print([(token.text, token.ent_type_) for token in doc])

在这篇中级指南中,我们学习了SpaCy库的一些高级特性,包括词向量、依赖性解析和自定义组件。这些特性都极大的扩展了SpaCy在自然语言处理领域的应用能力。

相关文章
|
监控 JavaScript 前端开发
影刀RPA(初级)(二)
影刀RPA(初级)(二)
7289 2
|
自然语言处理
深入spaCy: 高级教程
在我们的初级和中级spaCy教程中,我们已经覆盖了一些基本和中级的spaCy主题。在这篇文章中,我们将深入探讨spaCy的高级主题,包括扩展属性、自定义词汇特性和处理管道。
|
自然语言处理 算法 Python
掌握SpaCy:初级指南
SpaCy是一个非常强大的Python自然语言处理库,它包含了众多强大功能,如词性标注、命名实体识别、依赖关系解析等等。这篇文章的目标是帮助你了解SpaCy的基本功能和如何使用。
|
机器人
影刀RPA(初级)(一)
影刀RPA(初级)(一)
4312 0
|
自然语言处理 API Docker
spacy教程(持续更新ing...)
本文介绍spacy模型的使用方式,即spacy的API使用教程。spacy包的API基本都要靠特定模型(trained pipeline)来使用,本文主要用英文(en_core_web_sm)和中文(zh_core_web_sm)来做示例,毕竟我就只会这两种语言。 spacy模型官网:Trained Models & Pipelines · spaCy Models Documentation
|
Web App开发 数据可视化 机器人
|
安全 编译器 开发者
|
安全 编译器 开发者

热门文章

最新文章

下一篇
开通oss服务