领域模型图(数据架构/ER图)

简介: 数据架构重要的输出是数据-实体关系图,简称 ER 图。ER 图中包含了实体(数据对象)、关系和属性 3 种基本成分。ER 图可以用来建立数据模型。如何准确的建立产品的数据模型,需要分解出业务需要什么样的数据。数据域的分解过程是站在业务架构的基础上,对业务域进行模型分析的过程。

数据架构重要的输出是数据-实体关系图,简称 ER 图。ER 图中包含了实体(数据对象)、关系和属性 3 种基本成分。ER 图可以用来建立数据模型。如何准确的建立产品的数据模型,需要分解出业务需要什么样的数据。数据域的分解过程是站在业务架构的基础上,对业务域进行模型分析的过程。说起业务建模,大家很快会想到领域模型这个概念。这里的思路是通过领域建模来逐步提取系统的数据架构图。
说到领域模型,这里采用四色原型法进行业务模型的抽象。在进行四色模型分析前,我们先了解下四色模型的一些基本概念。四色模型,顾名思义是通过四种不同颜色代表四种不同的原型。
Moment-Interval Archetype 时标性原型
表示事物在某个时刻或某一段时间内发生的。使用红色表示,简写为 MI.
Part-Place-Thing Archetype 参与方-地点-物品原型.
表示参与扮演不同角色的人或事物。使用绿色表示。简写为 PPT。
Role Archetype 角色原型
角色是一种参与方式,它由人或组织机构、地点或物品来承担。使用黄色表示。简写为 Role。
Description Archetype 描述原型
表示资料类型的资源,它可以被其它原型反复使用,并为其它原型提供行为。使用蓝色表示。简写为 DESC。
以风控系统为例,进行领域建模的过程如下:

1.关键流程
在进行业务建模前,首先需要梳理出业务的流程,这一步在业务架构分解环节中已经完成。按照四色建模法的原则,将业务流程图进行一点改造。在原来的流程图上,将流程涉及的事务和角色添加进来。 改造之后的流程图如下:

管理人员

处理小二

风控小二

处理小二

风险事件

数据对象

规则/模型

异常风险

通知

分析报告

规则&模型

风险处置

告警通知

数据采集

风险分析

风险识别

设置


2.领域模型骨干
从业务流中,我们可以清晰的定义出 Moment-Interval Archetype (时标性原型),流程中的每个节点符合 MI 的定义,即事物在某个时间段内发生。在 MI 的定义过程中,一种方法是通过名词+动词进行定义。那么,风控的 MI 即为:数据采集、规则 &模型设置、风险识别、告警通知、风险处置、风险分析(MI 使用红色表示)。
在得到骨干之后,我们需要丰富这个模型,使它可以更好的描述业务概念。这里需要补充一些实体对象,通常实体对象包括:参与方、地点、物(party/place/thing)。
Part-Place-Thing Archetype(参与方-地点-物品原型):业务对象、规则、模型、异常风险、通知、异常事件、分析报告(PPT 使用绿色表示)。
领域模型骨干图,如下:

通知

异常风险

业务对象

数据采集

风险识别

规则&模型

风险告警

设置

规则

模型

风险处置

风险分析

PARTPLACETHING

PARTPLACETHING

异常事件

分析报告


3.领域模型角色
在领域模型骨干的基础上,需要把参与的角色(role)带进来。Role 使用黄色表示。如下图:

通知

异常风险

业务对象

规则&模型

数据采集

风险识别

风险告警

设置

风险分析

风险处置

管理人员

处理小二

规则

模型

分析报告

异常事件


4.领域模型描述
最后将模型的描述信息添加进来,模型的描述信息中涵盖模型的具体属性。这些描述信息对于后面数据库设计有很大的影响。模型描述使用蓝色标注,如下图:

异常风险

通知

业务对象

风险告警

数据采集

规则&模型

风险识别

设置

管理人员

处理小二

模型

规则

异常事件

分析报告

规则描述

模型描述

DESCRIPTION

报告详情

事件详情


5.提取 ER 图
领域模型构建完成之后,在此基础上,我们已经能够初步的掌握整个系统的数据模型。其中绿色的 Part-Place-Thing Archetype(参与方-地点-物品原型),可以用来表示 ER 图中的实体模型。红色的 Moment-Interval Archetype(时标性原型),可以用来表示 ER 图中的关系。对领域模型架构图进行提炼,得到如下图:

模型类型

属于

通知

风险报告

模型

告警

分析

处置人

风险事件

处理

识别

规则

属于

规则类型


实体(Entity)和联系(RelationShip)存在一定的关联关系,一般存在 3 种约束性关系: 一对一约束、一对多约束和多对多约束。将这些约束性关系表现在 ER 图中,用于展现实体与实体间具体的关联关系,最终输出 ER 图。(考虑保证 ER 的简洁性,这里并没有把模型的属性画进来)

模型类型

属于

通知

模型

分析

告警

风险事件

处置人

处理

识别

规则

属于

规则类型


若有收获,就点个赞吧


目录
相关文章
|
2月前
|
存储 BI Shell
Doris基础-架构、数据模型、数据划分
Apache Doris 是一款高性能、实时分析型数据库,基于MPP架构,支持高并发查询与复杂分析。其前身是百度的Palo项目,现为Apache顶级项目。Doris适用于报表分析、数据仓库构建、日志检索等场景,具备存算一体与存算分离两种架构,灵活适应不同业务需求。它提供主键、明细和聚合三种数据模型,便于高效处理更新、存储与统计汇总操作,广泛应用于大数据分析领域。
288 2
|
2月前
|
SQL 缓存 前端开发
如何开发进销存系统中的基础数据板块?(附架构图+流程图+代码参考)
进销存系统是企业管理采购、销售与库存的核心工具,能有效提升运营效率。其中,“基础数据板块”作为系统基石,决定了后续业务的准确性与扩展性。本文详解产品与仓库模块的设计实现,涵盖功能概述、表结构设计、前后端代码示例及数据流架构,助力企业构建高效稳定的数字化管理体系。
|
4月前
|
人工智能 负载均衡 API
长连接网关技术专题(十二):大模型时代多模型AI网关的架构设计与实现
随着 AI 技术快速发展,业务对 AI 能力的渴求日益增长。当 AI 服务面对处理大规模请求和高并发流量时,AI 网关从中扮演着至关重要的角色。AI 服务通常涉及大量的计算任务和设备资源占用,此时需要一个 AI 网关负责协调这些请求来确保系统的稳定性与高效性。因此,与传统微服务架构类似,我们将相关 API 管理的功能(如流量控制、用户鉴权、配额计费、负载均衡、API 路由等)集中放置在 AI 网关层,可以降低系统整体复杂度并提升可维护性。 本文要分享的是B站在大模型时代基于多模型AI的网关架构设计和实践总结,希望能带给你启发。
271 4
|
4月前
|
人工智能 缓存 自然语言处理
Bolt DIY架构揭秘:从模型初始化到响应生成的技术之旅
在使用Bolt DIY或类似的AI对话应用时,你是否曾好奇过从输入提示词到获得回答的整个过程是如何运作的?当你点击发送按钮那一刻,背后究竟发生了什么?本文将揭开这一过程的神秘面纱,深入浅出地解析AI对话系统的核心技术架构。
|
20天前
|
数据采集 监控 数据可视化
数据量暴涨时,抓取架构该如何应对?——豆瓣电影案例调研
本案例讲述了在豆瓣电影数据采集过程中,面对数据量激增和限制机制带来的挑战,如何通过引入爬虫代理、分布式架构与异步IO等技术手段,实现采集系统的优化与扩展,最终支撑起百万级请求的稳定抓取。
数据量暴涨时,抓取架构该如何应对?——豆瓣电影案例调研
|
9天前
|
数据采集 缓存 前端开发
如何开发门店业绩上报管理系统中的商品数据板块?(附架构图+流程图+代码参考)
本文深入讲解门店业绩上报系统中商品数据板块的设计与实现,涵盖商品类别、信息、档案等内容,详细阐述技术架构、业务流程、数据库设计及开发技巧,并提供完整代码示例,助力企业构建稳定、可扩展的商品数据系统。
|
9天前
|
缓存 前端开发 BI
如何开发门店业绩上报管理系统中的门店数据板块?(附架构图+流程图+代码参考)
门店业绩上报管理是将门店营业、动销、人效等数据按标准化流程上报至企业中台或BI系统,用于考核、分析和决策。其核心在于构建“数据底座”,涵盖门店信息管理、数据采集、校验、汇总与对接。实现时需解决数据脏、上报慢、分析无据等问题。本文详解了实现路径,包括系统架构、数据模型、业务流程、开发要点、三大代码块(数据库、后端、前端)及FAQ,助你构建高效门店数据管理体系。
|
24天前
|
SQL 数据采集 数据处理
终于有人把数据架构讲清楚了!
本文深入浅出地解析了数据架构的核心逻辑,涵盖其定义、作用、设计方法及常见误区,助力读者构建贴合业务的数据架构。
|
5月前
|
存储 运维 Serverless
千万级数据秒级响应!碧桂园基于 EMR Serverless StarRocks 升级存算分离架构实践
碧桂园服务通过引入 EMR Serverless StarRocks 存算分离架构,解决了海量数据处理中的资源利用率低、并发能力不足等问题,显著降低了硬件和运维成本。实时查询性能提升8倍,查询出错率减少30倍,集群数据 SLA 达99.99%。此次技术升级不仅优化了用户体验,还结合AI打造了“一看”和“—问”智能场景助力精准决策与风险预测。
434 69
|
4月前
|
机器学习/深度学习 人工智能 算法
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
该研究系统梳理了大型多模态推理模型(LMRMs)的技术发展,从早期模块化架构到统一的语言中心框架,提出原生LMRMs(N-LMRMs)的前沿概念。论文划分三个技术演进阶段及一个前瞻性范式,深入探讨关键挑战与评估基准,为构建复杂动态环境中的稳健AI系统提供理论框架。未来方向聚焦全模态泛化、深度推理与智能体行为,推动跨模态融合与自主交互能力的发展。
244 13
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析

热门文章

最新文章