学C的第二十二天【深度剖析数据在内存中的存储:1. 数据类型介绍;2. 整型在内存中的存储】-2

简介: 2. 整型在内存中的存储变量的创建时要在内存中开辟空间的,空间的大小是根据不同的类型而决定的 而开辟空间后,数据在所开辟内存中是如何存储的呢?

e99ef46d236b4771b1523700efaa24b2.png2. 整型在内存中的存储

变量的创建时要在内存中开辟空间的,空间的大小根据不同的类型而决定

           

而开辟空间后,数据在所开辟内存中是如何存储的呢?

(1). 整数用二进制表示的三种表示形式:原码、反码、补码

           

e6e20336811b4c3dbafefbfe4a77127d.png

原码:

正数:直接数值按照正负数的形式翻译二进制得到原码

             

负数:直接数值按照正负数的形式翻译二进制得到原码

或者

反码按位取反得到原码

再或者

补码按位取反再+1得到原码

反码:

正数:原码、反码、补码 都相同

         

负数:原码符号位不变,将其它位依次按位取反得到反码

或者

补码-1得到反码

补码:

正数:原码、反码、补码 都相同

负数:反码+1得到补码

(2). 符号位 和 数值位(整数)

           

上面三种表示形式都有 符号位 和 数值位 两部分

符号位:

二进制最高位的一位叫做符号位

符号位 用 0 表示 “”;

符号位 用 1 表示 “”。

数值位:

除了符号位,其它位都是数值位

对于正数原码反码、补码 相同

对于负数三种表示方法各不相同(参考上面)

(演示代码:)

#include <stdio.h>
int main() 
{
  int num = 10;//创建一个叫num的整型变量,这时num向内存申请4个字节来存放数据
  // 4个字节 - 32比特位
  //00000000000000000000000000001010 -- 原码
  //00000000000000000000000000001010 -- 反码
  //00000000000000000000000000001010 -- 补码
  int num2 = -10;
  //10000000000000000000000000001010 -- 原码
  //11111111111111111111111111110101 -- 反码
  //11111111111111111111111111110110 -- 补码
  return 0;
}


4aa2ef0794a6460cbd98cf68ccf5b046.png

对于整型来说:数据存放在内存中其实存放的是补码

         

计算机系统中,数值一律用 补码表示存储

原因在于:使用补码,可以符号位数值位统一处理把符号位也看成数值位来计算

同时,加法减法也可以统一处理CPU只有加法器),

此为,补码原码相互转换,其运算过程是相同的

原码转换为补码按位取反再+1补码转换为原码也可以按位取反再+1),

             

只有加法器计算减法时1 - 1 --> 1 + (-1)

假设计算用的是原码,算出来的是 -2,是错误

而用补码进行计算后,再用原码表示,结果则是

2fe9304bdcbc436a91eddee245aa6f5a.png

(为什么会倒着存储呢?)

           

             

(3). 大小端介绍

字节序:

字节单位讨论存储顺序大端字节序存储 / 小端字节序存储

                 

低位 / 高位:

十进制:数字123,1是百位,2是十位,3是个位。这里的1就是高位,3就是低位。

十六进制0x 11 22 33 44,这里 11 就是高位44就是低位

大端字节序存储:

大端(存储)模式:指数据的低位字节内容保存在内存的高地址中,而数据的高位字节内容,保存在内存的低地址中;

低位高地址高位低地址

小端字节序存储:

小段(存储)模式:指数据的低位字节内容保存在内存的低地址中,而数据的高位字节内容,保存在内存的高地址中;

低位低地址高位高地址

为什么有大端和小段:

一个数据只要超过一个字节,在内存中存储的时候就必然涉及到顺序的问题,所以要有大端小端存储模式对该数据进行排序

             


为什么会有大小端模式之分,是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为 8bit 。但是在C语言中除了 8bit 的 char 之外,还有 16bit 的 short 类型,32位的 long 类型(具体要看编译器),另外,对于位数大于8位的处理器,例如 16位 或者 32位 的处理器,由于寄存器宽度大于一个字节,那么就存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式 。

例如:一个 16bit 的 short 类型 x ,在内存中的地址为 0x0010,x 的值为 0x1122,那么 0x11 为高字节,0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即地址 0x0010 中, 0x22 放在高地址中,即地址 0x0011 中。小端模式则相反。

我们常用的 x86 结构是小端模式,所以上面的图数据会“倒着放”,低位字节放在了低地址,高位字节放在了高地址。而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择为大端模式还是小端模式。

(4). 写个程序判断大小端:

             

思路:

变量a存放在内存中的十六进制数为:01 00 00 00(小端存储),地址第一位是1

如果是大端存储:则应该是:00 00 00 01,地址第一位是0

可以把 a 的地址取出第一位,如果

第一位地址 == 1,说明是小端存储

第一位地址 == 0,说明是大端存储

取出 int类型a 的 地址 第一位方法:

*(char*)&a

int* 强制转换为 char*,再解引用,即可取出一位地址的内容

实现代码:

#include <stdio.h>
int check_sys()
{
  int a = 1;
  //要大于一个字节的数据,才有顺序可言
  判断大小端
  //if (*(char*)&a == 1)
  //  //把int*强制转换a的地址为char*再解引用,判断地址第一位的内容
  //{
  //  return 1;
  //}
  //else
  //{
  //  return 0;
  //}
  //可以直接写成
  return *(char*)&a;
}
int main() 
{
  int ret = check_sys();
  if (ret == 1)
  {
    printf("小端\n");
  }
  else
  {
    printf("大端\n");
  }
  return 0;
}


e99ef46d236b4771b1523700efaa24b2.png

目录
打赏
0
0
0
0
4
分享
相关文章
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
234 12
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
559 1
|
2月前
|
深入理解JVM,包含字节码文件,内存结构,垃圾回收,类的声明周期,类加载器
JVM全称是Java Virtual Machine-Java虚拟机JVM作用:本质上是一个运行在计算机上的程序,职责是运行Java字节码文件,编译为机器码交由计算机运行类的生命周期概述:类的生命周期描述了一个类加载,使用,卸载的整个过类的生命周期阶段:类的声明周期主要分为五个阶段:加载->连接->初始化->使用->卸载,其中连接中分为三个小阶段验证->准备->解析类加载器的定义:JVM提供类加载器给Java程序去获取类和接口字节码数据类加载器的作用:类加载器接受字节码文件。
271 55
Arthas memory(查看 JVM 内存信息)
Arthas memory(查看 JVM 内存信息)
155 6
JVM实战—2.JVM内存设置与对象分配流转
本文详细介绍了JVM内存管理的相关知识,包括:JVM内存划分原理、对象分配与流转、线上系统JVM内存设置、JVM参数优化、问题汇总。
121 12
JVM实战—2.JVM内存设置与对象分配流转
JVM简介—2.垃圾回收器和内存分配策略
本文介绍了Java垃圾回收机制的多个方面,包括垃圾回收概述、对象存活判断、引用类型介绍、垃圾收集算法、垃圾收集器设计、具体垃圾回收器详情、Stop The World现象、内存分配与回收策略、新生代配置演示、内存泄漏和溢出问题以及JDK提供的相关工具。
JVM简介—2.垃圾回收器和内存分配策略
JVM简介—1.Java内存区域
本文详细介绍了Java虚拟机运行时数据区的各个方面,包括其定义、类型(如程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区和直接内存)及其作用。文中还探讨了各版本内存区域的变化、直接内存的使用、从线程角度分析Java内存区域、堆与栈的区别、对象创建步骤、对象内存布局及访问定位,并通过实例说明了常见内存溢出问题的原因和表现形式。这些内容帮助开发者深入理解Java内存管理机制,优化应用程序性能并解决潜在的内存问题。
242 29
JVM简介—1.Java内存区域
|
5月前
|
JVM: 内存、类与垃圾
分代收集算法将内存分为新生代和老年代,分别使用不同的垃圾回收算法。新生代对象使用复制算法,老年代对象使用标记-清除或标记-整理算法。
74 6
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问