【MATLAB第62期】基于MATLAB的PSO-NN、BBO-NN、前馈神经网络NN回归预测对比

简介: 后台私信回复“62期”即可获取下载链接。

【MATLAB第62期】基于MATLAB的PSO-NN、BBO-NN、前馈神经网络NN回归预测对比

一、数据设置

1、7输入1输出
2、103行样本
3、80个训练样本,23个测试样本

二、效果展示

2023-07-30_181536.png
2023-07-30_181521.png
2023-07-30_181510.png
2023-07-30_181456.png
2023-07-30_181447.png

NN训练集数据的R2为:0.73013
NN测试集数据的R2为:0.23848
NN训练集数据的MAE为:3.0122
NN测试集数据的MAE为:4.4752
NN训练集数据的MAPE为:0.088058
NN测试集数据的MAPE为:0.1302
PSO-NN训练集数据的R2为:0.76673
PSO-NN测试集数据的R2为:0.72916
PSO-NN训练集数据的MAE为:3.124
PSO-NN测试集数据的MAE为:3.1873
PSO-NN训练集数据的MAPE为:0.088208
PSO-NN测试集数据的MAPE为:0.094787
BBO-NN训练集数据的R2为:0.67729
BBO-NN测试集数据的R2为:0.46872
BBO-NN训练集数据的MAE为:3.5204
BBO-NN测试集数据的MAE为:4.4843
BBO-NN训练集数据的MAPE为:0.099475
BBO-NN测试集数据的MAPE为:0.14177

三、代码展示(部分)

%%PSO-NN及BBO-BP回归
%基于生物地理优化进化算法(BBO)
%-----------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng(0)
%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% Learning 
n = 9; % Neurons
%----------------------------------------
% 'trainlm'        Levenberg-Marquardt
% 'trainbr'     Bayesian Regularization (good)
% 'trainrp'      Resilient Backpropagation
% 'traincgf'    Fletcher-Powell Conjugate Gradient
% 'trainoss'    One Step Secant (good)
% 'traingd'     Gradient Descent
% Creating the NN ----------------------------
net = feedforwardnet(n,'trainoss');
%---------------------------------------------
% configure the neural network for this dataset
[net tr]= train(net,p_train, t_train);
perf = perform(net,p_train', t_train'); % mse

%%  仿真预测
t_sim01=net(p_train);
t_sim02=net(p_test);
T_sim01 = mapminmax('reverse', t_sim01, ps_output);
T_sim02 = mapminmax('reverse', t_sim02, ps_output);

%%  均方根误差
error01 = sqrt(sum((T_sim01 - T_train).^2) ./ M);
error02 = sqrt(sum((T_sim02 - T_test ).^2) ./ N);


%%  绘图
figure()
subplot(2,1,1)
plot(1: M, T_train, 'r-*', 1: M, T_sim01, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   'NN训练集预测结果对比'; ['RMSE=' num2str(error01)]};
title(string)
xlim([1, M])
grid

subplot(2,1,2)
plot(1: N, T_test, 'r-*', 1: N, T_sim02, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   'NN测试集预测结果对比'; ['RMSE=' num2str(error02)]};
title(string)
xlim([1, N])
grid


t_sim11=net_pso(p_train);
t_sim22=net_pso(p_test);
T_sim11 = mapminmax('reverse', t_sim11, ps_output);
T_sim22 = mapminmax('reverse', t_sim22, ps_output);
%%  均方根误差
error11 = sqrt(sum((T_sim11 - T_train).^2) ./ M);
error22 = sqrt(sum((T_sim22 - T_test ).^2) ./ N);

%%  相关指标计算
%  R2
R01 = 1 - norm(T_train - T_sim01)^2 / norm(T_train - mean(T_train))^2;
R02 = 1 - norm(T_test  - T_sim02)^2 / norm(T_test  - mean(T_test ))^2;

disp(['NN训练集数据的R2为:', num2str(R01)])
disp(['NN测试集数据的R2为:', num2str(R02)])

%  MAE
mae01 = sum(abs(T_sim01 - T_train)) ./ M ;
mae02 = sum(abs(T_sim02 - T_test )) ./ N ;

disp(['NN训练集数据的MAE为:', num2str(mae01)])
disp(['NN测试集数据的MAE为:', num2str(mae02)])

%  MAPE   mape = mean(abs((YReal - YPred)./YReal));

mape01 = mean(abs((T_train - T_sim01)./T_train));    
mape02 = mean(abs((T_test - T_sim02 )./T_test));      

disp(['NN训练集数据的MAPE为:', num2str(mape01)])
disp(['NN测试集数据的MAPE为:', num2str(mape02)])


%%  绘图
figure()
subplot(2,1,1)
plot(1: M, T_train, 'r-*', 1: M, T_sim11, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   'PSO-NN训练集预测结果对比'; ['RMSE=' num2str(error11)]};
title(string)
xlim([1, M])
grid

subplot(2,1,2)
plot(1: N, T_test, 'r-*', 1: N, T_sim22, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   'PSO-NN测试集预测结果对比'; ['RMSE=' num2str(error22)]};
title(string)
xlim([1, N])
grid

%%  相关指标计算
%  R2
R11 = 1 - norm(T_train - T_sim11)^2 / norm(T_train - mean(T_train))^2;
R22 = 1 - norm(T_test  - T_sim22)^2 / norm(T_test  - mean(T_test ))^2;

disp(['PSO-NN训练集数据的R2为:', num2str(R11)])
disp(['PSO-NN测试集数据的R2为:', num2str(R22)])

%  MAE
mae11 = sum(abs(T_sim11 - T_train)) ./ M ;
mae22 = sum(abs(T_sim22 - T_test )) ./ N ;

disp(['PSO-NN训练集数据的MAE为:', num2str(mae11)])
disp(['PSO-NN测试集数据的MAE为:', num2str(mae22)])

%  MAPE   mape = mean(abs((YReal - YPred)./YReal));

mape11 = mean(abs((T_train - T_sim11)./T_train));    
mape22 = mean(abs((T_test - T_sim22 )./T_test));      

disp(['PSO-NN训练集数据的MAPE为:', num2str(mape11)])
disp(['PSO-NN测试集数据的MAPE为:', num2str(mape22)])



%% BBO优化 NN 权重和偏差
%% PSO优化 NN 权重和偏差
Weights_Bias_bbo=getwb(net_bbo);

t_sim31=net_bbo(p_train);
t_sim32=net_bbo(p_test);
T_sim31 = mapminmax('reverse', t_sim31, ps_output);
T_sim32 = mapminmax('reverse', t_sim32, ps_output);
%%  均方根误差
error31 = sqrt(sum((T_sim31 - T_train).^2) ./ M);
error32 = sqrt(sum((T_sim32 - T_test ).^2) ./ N);


%%  绘图
figure()
subplot(2,1,1)
plot(1: M, T_train, 'r-*', 1: M, T_sim31, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   'BBO-NN训练集预测结果对比'; ['RMSE=' num2str(error31)]};
title(string)
xlim([1, M])
grid

subplot(2,1,2)
plot(1: N, T_test, 'r-*', 1: N, T_sim32, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   'BBO-NN测试集预测结果对比'; ['RMSE=' num2str(error32)]};
title(string)
xlim([1, N])
grid

%%  相关指标计算
%  R2
R31 = 1 - norm(T_train - T_sim31)^2 / norm(T_train - mean(T_train))^2;
R32 = 1 - norm(T_test  - T_sim32)^2 / norm(T_test  - mean(T_test ))^2;

disp(['BBO-NN训练集数据的R2为:', num2str(R31)])
disp(['BBO-NN测试集数据的R2为:', num2str(R32)])

%  MAE
mae31 = sum(abs(T_sim31 - T_train)) ./ M ;
mae32 = sum(abs(T_sim32 - T_test )) ./ N ;

disp(['BBO-NN训练集数据的MAE为:', num2str(mae31)])
disp(['BBO-NN测试集数据的MAE为:', num2str(mae32)])

%  MAPE   mape = mean(abs((YReal - YPred)./YReal));

mape31 = mean(abs((T_train - T_sim31)./T_train));    
mape32 = mean(abs((T_test - T_sim32 )./T_test));      

disp(['BBO-NN训练集数据的MAPE为:', num2str(mape31)])
disp(['BBO-NN测试集数据的MAPE为:', num2str(mape32)])

四、代码获取

后台私信回复“62期”即可获取下载链接。

相关文章
|
3月前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
118 0
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
230 2
|
2月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
310 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
145 0
|
3月前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
123 2
|
2月前
|
传感器 机器学习/深度学习 数据采集
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
186 0
|
12月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
273 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
230 10
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
242 10

热门文章

最新文章