Pytorch基本使用—参数初始化

简介: 使用Pytorch进行参数初始化教程,重点是Xavier

深度学习模型参数初始化是指在训练深度神经网络时,对网络的权重和偏置进行初始化的过程。合适的参数初始化可以加速模型的收敛,并提高模型的性能。

✨ 1 基本介绍

在深度学习中,常用的参数初始化方法有以下几种:

  1. 零初始化(Zero Initialization):将所有权重和偏置初始化为0。然而,这种方法会导致所有神经元具有相同的输出,无法破坏对称性,因此不常用。
  2. 随机初始化(Random Initialization):将权重和偏置随机初始化为较小的随机值。这种方法可以打破对称性,但并不能保证初始化的权重和偏置能够适应网络的输入和输出分布。
  3. Xavier初始化(Xavier Initialization):根据每一层的输入维度和输出维度的大小来进行初始化。Xavier初始化方法根据激活函数的导数和输入输出的维度来调整初始化的范围,使得每一层的激活值保持在一个合适的范围内。
  4. He初始化(He Initialization):类似于Xavier初始化,但在计算权重的标准差时,将输入维度除以2。这是由于ReLU等非线性激活函数的性质导致的。
  5. 预训练初始化(Pretraining Initialization):在某些情况下,可以使用预训练的模型参数来初始化新的模型。例如,利用在大规模数据集上预训练的模型参数来初始化新任务的模型,可以加快模型的收敛速度。

需要注意的是,不同的参数初始化方法适用于不同的网络架构和激活函数。在实际应用中,需要根据具体情况选择适当的参数初始化方法。此外,还可以通过调整学习率和正则化等技巧来进一步优化训练过程。

✨ 2 零初始化(不常用)

🎈 2.1 理论

这里主要分析一下神经网络为什么不能将参数全部初始化为0
假设我们有下面的网络(为了简单,全部以线性函数计算):

第一层计算为:

第二层计算为:

以参数W11和W12的反向传播为例,梯度为:

因为都是0,则梯度为0,则参数更新停止。

✨ 3 Xavier初始化

第二节我们简单总结了为什么神经网络参数不能输出化为0,接下来我们讨论Xavier初始化。

🎃 3.1 介绍

在神经网络中,每个神经元的输入是由上一层的神经元输出和权重参数决定的。如果权重参数初始化过大,会导致输入值变得很大,从而使得激活函数的导数趋近于0,造成梯度消失问题。相反,如果权重参数初始化过小,会导致输入值变得很小,从而使得激活函数的导数趋近于1,造成梯度爆炸问题。

Xavier初始化通过根据网络层的输入和输出维度来合理地初始化权重参数,使得权重参数的方差保持在一个相对稳定的范围内。这样可以避免梯度消失和梯度爆炸问题,有助于提高网络的训练效果。

⛱️ 3.2 推导

这里我们以下列网络为例:

首先看前向传播

方差为(这里应用概率论相关计算公式,需要注意的是这里Xi经过归一化,E(Xi)=0)

如果Xi和Wi独立同分布,那么D(a1)的最终公式为

这里代表着输入维度
而我们的目标是,因此


与上述计算方式一样,反向传播最终结果是。只是这里,是输出的维度大小。


但是一般情况下是不同的,因此,这里采取一种折中的方式
,我们让在区间[a, b]上均匀采样(均匀分布)
结合均匀分布方差公式,解出Xavier初始化采样范围为

🎈 3.3 构造

torch.nn.init.xavier_uniform_(tensor, a=0, b=1)
  1. tensor:需要填充的张量
  2. a:均匀分布的下界
  3. b:均匀分布的上界

☃️ 3.4 例子

w = torch.empty(3, 5)
nn.init.uniform_(w)

result:

tensor([[0.2116, 0.3085, 0.5448, 0.6113, 0.7697],
        [0.8300, 0.2938, 0.4597, 0.4698, 0.0624],
        [0.5034, 0.1166, 0.3133, 0.3615, 0.3757]])
相关文章
|
机器学习/深度学习 数据可视化 PyTorch
【PyTorch】TensorBoard基本使用
【PyTorch】TensorBoard基本使用
238 0
|
5月前
|
机器学习/深度学习 并行计算 PyTorch
【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算
【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】17. Pytorch中模型参数的访问、初始化和共享方法
【从零开始学习深度学习】17. Pytorch中模型参数的访问、初始化和共享方法
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch学习笔记(6):模型的权值初始化与损失函数
Pytorch学习笔记(6):模型的权值初始化与损失函数
316 0
Pytorch学习笔记(6):模型的权值初始化与损失函数
|
PyTorch 算法框架/工具
PyTorch: 权值初始化
PyTorch: 权值初始化
88 0
PyTorch: 权值初始化
|
机器学习/深度学习 算法 PyTorch
机器学习之PyTorch和Scikit-Learn第6章 学习模型评估和超参数调优的最佳实践Part 2
本节中,我们来看两个非常简单但强大的诊断工具,可帮助我们提升学习算法的性能:学习曲线和验证曲线,在接下的小节中,我们会讨论如何使用学习曲线诊断学习算法是否有过拟合(高方差)或欠拟合(高偏置)的问题。另外,我们还会学习验证曲线,它辅助我们处理学习算法中的常见问题。
353 0
机器学习之PyTorch和Scikit-Learn第6章 学习模型评估和超参数调优的最佳实践Part 2
|
机器学习/深度学习 存储 数据采集
机器学习之PyTorch和Scikit-Learn第6章 学习模型评估和超参数调优的最佳实践Part 1
在前面的章节中,我们学习了用于分类的基本机器学习算法以及如何在喂给这些算法前处理好数据。下面该学习通过调优算法和评估模型表现来构建良好机器学习模型的最佳实践了。本章中,我们将学习如下内容: 评估机器学习模型表现 诊断机器学习算法常见问题 调优机器学习模型 使用不同的性能指标评估预测模型 通过管道流程化工作流
291 0
机器学习之PyTorch和Scikit-Learn第6章 学习模型评估和超参数调优的最佳实践Part 1
|
PyTorch 算法框架/工具 Python
【PyTorch】Transforms基本使用
【PyTorch】Transforms基本使用
88 0
|
机器学习/深度学习 算法 数据可视化
使用Optuna进行PyTorch模型的超参数调优
Optuna是一个开源的超参数优化框架,Optuna与框架无关,可以在任何机器学习或深度学习框架中使用它。本文将以表格数据为例,使用Optuna对PyTorch模型进行超参数调优。
219 0
|
机器学习/深度学习 存储 算法
Pytorch基本使用——优化器
总结了两种优化器,SGD和Adam及变种AdamW
258 0

热门文章

最新文章

下一篇
无影云桌面