深度学习基础

简介: 深度学习的基础知识点

1 机器学习、深度学习、人工智能

1.1 机器学习

机器学习是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身性能的学科。
基本步骤:获取数据、数据预处理、特征提取、特征选择、推理预测识别(数据预处理、特征提取、特征选择合称为特征表达)

1.2 监督学习

监督学习,是其训练集的数据是提前分好类,带有标签的数据,进行学习到模型以及参数。

1.3 非监督学习

非监督学习,需要将一系列没有标签的训练数据,输入到算法中,需要根据样本之间的相似性对样本集进行分类或者分析。

2 模型相关

2.1 判别模型和生成模型

生成式模型:由数据学习联合概率分布P(X,Y),然后由P(Y|X)=P(X,Y)/P(X),求出概率分布P(Y|X)作为预测的模型,该方法表示了给定输入X与输出Y之间的生成关系。
判别式模型:由数据直接学习决策函数y=f(x)或者条件概率分布P(Y|X)作为预测模型,判别方法关心的是对于给定输入X应预测出什么样的输出Y。
判别式模型方便很多,因为生成式模型要学习一个X,Y的联合分布往往需要很多数据,而判别式模型需要的数据则相对少,因为判别式模型更关注输入特征的差异性。不过生成式既然使用了更多数据来生成联合分布,自然也能够提供更多的信息

2.2 回归模型

回归模型正是表示从输入变量到输出变量之间映射的函数。例如,线性回归代表目标值预期是输入变量的线性组合。

2.3 多层神经网络

由输入层、输出层、隐藏层组成:

  1. 输入层:接受与处理训练数据集中的各输入变量值
  2. 隐层:实现非线性数据的线性变换
  3. 输出层:给出输出变量的分类或预测结果

3 正则化

经常使用的是L1和L2正则化(L2>L1),思想是在损失函数增加一项(正则项)。

3.1 L2正则化

正则项为权重的平方和,公式为:

其中是不添加正则化的损失函数。

3.2 L1正则化

正则项为权重的和,公式为:

3.3 偏差和方差

偏差是描述模型的期望预测与真实结果之间的偏离程度。偏差大说明模型拟合能力差,此时欠拟合。
方差是描述数据扰动造成的模型性能的变化,即模型在不同数据集上的稳定程度。方差大,说明模型稳定性差,训练集上拟合优秀,测试集上拟合差,则方差大,此时过拟合。

3.4 欠拟合

欠拟合,模型参数学习的过少,模型不能很好地拟合数据

3.5 过拟合

过拟合:把一些不必要的特征过度计算了

4 数据集相关

评估方法就是如何划分数据集,应该要求测试集与训练集之间互斥,用测试集来预测评估模型方法。

4.1 留出法

就是将整个数据集按照某种比例进行划分成训练集和测试集,训练集和测试集比例一般为7:3。

4.2 交叉验证法

将全部数据集S分成 k个不相交的子集,每次从分好的子集中里面,拿出一个作为测试集,其它k-1个作为训练集,根据训练集训练出模型,放到测试集上,得出结果。计算k次求得的结果的平均值,作为该模型的真实结果。

如果k太大,误差估计的偏差很小。但是误差估计的方差很大(由于验证点少)计算时间非常大(试验次数多),会导致过拟合。
如果k太小,计算量小,计算时间短。但是误差估计的方差小(由于验证点多)误差估计的偏差会很大,会导致欠拟合。

4.3 留一法

交叉验证法的一种,每次只留下一个样本做测试集,其它样本做训练集,如果有k个样本,则需要训练k次,测试k次(注意这里是以样本为单位,交叉验证法以子集为单位)。
适合小样本数据

4.4 自助法

留出法每次从数据集D中抽取一个样本加入数据集D'中,然后再将该样本放回到原数据集D中,即D中的样本可以被重复抽取。这样,D中的一部分样本会被多次抽到,而另一部分样本从未被抽到。

5 最大似然学习

已经知道结果,寻找使该结果出现可能性最大的参数的过程。计算步骤如下:

  1. 写出似然函数
  2. 对似然函数取对数
  3. 求导,令导数为0得到似然方程
  4. 解似然方程得到参数
相关文章
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
通过深度学习实践来理解深度学习的核心概念
通过实践,不仅可以加深对深度学习概念的理解,还能发现理论与实际之间的差距,进而对模型进行改进和优化。实践中遇到的问题(如梯度消失、过拟合、训练效率低等)能促使你深入思考,进而更加全面地掌握深度学习的核心概念。
46 4
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习:从基础到实践
【9月更文挑战第33天】本文将深入探讨深度学习的基本原理,包括神经网络的构建、训练和优化等关键步骤。我们将通过实际代码示例,展示如何利用深度学习解决实际问题,如图像识别和自然语言处理等。无论你是初学者还是有经验的开发者,都能从中获得新的启示和思考。
44 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
浅谈机器学习与深度学习的区别
浅谈机器学习与深度学习的区别
52 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习:从基础到实战
【9月更文挑战第23天】本文将带你走进深度学习的世界,从基本概念到实际应用,一步步揭示深度学习的神秘面纱。我们将通过实例和代码示例,帮助你理解和掌握深度学习的核心技术和方法。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的参考和启示。让我们一起探索深度学习的奥秘吧!
44 0
|
4月前
|
机器学习/深度学习 人工智能 算法
现代深度学习框架问题之什么是SoftmaxCrossEntropy,它在什么情况下使用
现代深度学习框架问题之什么是SoftmaxCrossEntropy,它在什么情况下使用
|
5月前
|
机器学习/深度学习 自然语言处理 算法
机器学习和深度学习的区别
机器学习和深度学习的区别
129 1
|
6月前
|
机器学习/深度学习 自然语言处理 算法
如何学习深度学习
如何学习深度学习
|
6月前
|
机器学习/深度学习 分布式计算 搜索推荐
深度学习入门:一篇概述深度学习的文章
深度学习入门:一篇概述深度学习的文章
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习技术
深度学习技术
118 0
|
机器学习/深度学习 数据采集 人工智能
下一篇
无影云桌面