改进粒子群算法求解电力系统经济调度问题(Matlab实现)

简介: 改进粒子群算法求解电力系统经济调度问题(Matlab实现)

1 相关知识点

                                 


这里总结一位博主的目录:梳理如下:


粒子群算法(带约束处理)——Python&Matlab实现


智能优化算法——粒子群算法(Matlab实现)


灰狼算法和粒子群算法比较(附完整Matlab代码)——可应用于电气期刊论文


粒子群算法求解电力系统环境经济调度+微电网调度(风、光、电动车、柴油机、主网)(Python代码实现)


改进的多目标差分进化算法在电力系统环境经济调度中的应用(Python代码实现)【电气期刊论文复现】


风电随机性动态经济调度模型(Python&Matlab代码)


多目标灰太狼算法求解环境经济调度问题(IEEE30)(Matlab实现)


多元宇宙算法求解电力系统多目标优化问题(Matlab实现)【电气期刊论文复现】


求解热电联产经济调度问题的改进遗传与粒子群算法


改进粒子群算法的配电网故障定位(Python&Matlab代码实现)


2 部分代码

知识点讲解完毕,下面就是Matlab代码:

clc;
clear;
close all;
%% 经济调度问题
extmodel=CreateModel();
CostFunction=@(x) MyCostExt(x,extmodel); % 成本函数(目标函数)
nVar=extmodel.nPlant;             % 发电机台数(决策变量的个数)
VarSize=[1 nVar];   % 决策变量矩阵的大小
VarMin=0;         % 变量下限
VarMax=1;         % 变量上限
%% 粒子群算法相关参数
MaxIt=100;      % 最大迭代次数
nPop=10;        % 总群数量
% w=1;            % 惯性权重
% wdamp=0.99;     % 惯性重量阻尼比
% c1=2;           % 个体学习系数
% c2=2;           % 种群学习系数
%% 约束系数
phi1=2.05;
phi2=2.05;
phi=phi1+phi2;
chi=2/(phi-2+sqrt(phi^2-4*phi));
w=chi;          % 惯性权重
wdamp=1;        % 惯性重量阻尼比
c1=chi*phi1;    % 个体学习系数
c2=chi*phi2;    % 种群学习系数
%% 飞行速度限制
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;
%% 初始化
empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Out=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
empty_particle.Best.Out=[];
particle=repmat(empty_particle,nPop,1);
BestSol.Cost=inf;
for i=1:nPop
    %=====初始化粒子群位置===============
    particle(i).Position=unifrnd(VarMin,VarMax,VarSize);
    %=====初始化速度======
    particle(i).Velocity=zeros(VarSize);
    %=====目标函数计算===========
    [particle(i).Cost, particle(i).Out]=CostFunction(particle(i).Position);
    %====更新粒子个体最优=====
    particle(i).Best.Position=particle(i).Position;
    particle(i).Best.Cost=particle(i).Cost;
    particle(i).Best.Out=particle(i).Out;
    %====更新粒子群全局最优========
    if particle(i).Best.Cost<BestSol.Cost
        BestSol=particle(i).Best;
    end
end
BestCost=zeros(MaxIt,1);
%% PSO 主循环
for it=1:MaxIt
    for i=1:nPop
        %============更新速度(跟着公式写就可以啦)===============
        particle(i).Velocity = w*particle(i).Velocity ...
            +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...
            +c2*rand(VarSize).*(BestSol.Position-particle(i).Position);
        %============适用速度限制============
        particle(i).Velocity = max(particle(i).Velocity,VelMin);
        particle(i).Velocity = min(particle(i).Velocity,VelMax);
        %============更新位置================
        particle(i).Position = particle(i).Position + particle(i).Velocity;
        IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);
        particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);
        %============适用位置限制============
        particle(i).Position = max(particle(i).Position,VarMin);
        particle(i).Position = min(particle(i).Position,VarMax);
        %============计算目标函数===========
        [particle(i).Cost, particle(i).Out] = CostFunction(particle(i).Position);
        %==========更新个体最优==========
        if particle(i).Cost<particle(i).Best.Cost
            particle(i).Best.Position=particle(i).Position;
            particle(i).Best.Cost=particle(i).Cost;
            particle(i).Best.Out=particle(i).Out;
            %=======更新全局最优============
            if particle(i).Best.Cost<BestSol.Cost
                BestSol=particle(i).Best;
            end
        end
    end
    BestCost(it)=BestSol.Cost;
    disp(['迭代次数' num2str(it) ': 最优解为 = ' num2str(BestCost(it))]);
    w=w*wdamp;
end
%% 结果
figure;
plot(BestCost,'LineWidth',2);
xlabel('迭代次数');
ylabel('最优解')


clc;
clear;
close all;
%% 经济调度问题
extmodel=CreateModel();
CostFunction=@(x) MyCostExt(x,extmodel); % 成本函数(目标函数)
nVar=extmodel.nPlant;             % 发电机台数(决策变量的个数)
VarSize=[1 nVar];   % 决策变量矩阵的大小
VarMin=0;         % 变量下限
VarMax=1;         % 变量上限
%% 粒子群算法相关参数
MaxIt=100;      % 最大迭代次数
nPop=10;        % 总群数量
% w=1;            % 惯性权重
% wdamp=0.99;     % 惯性重量阻尼比
% c1=2;           % 个体学习系数
% c2=2;           % 种群学习系数
%% 约束系数
phi1=2.05;
phi2=2.05;
phi=phi1+phi2;
chi=2/(phi-2+sqrt(phi^2-4*phi));
w=chi;          % 惯性权重
wdamp=1;        % 惯性重量阻尼比
c1=chi*phi1;    % 个体学习系数
c2=chi*phi2;    % 种群学习系数
%% 飞行速度限制
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;
%% 初始化
empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Out=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
empty_particle.Best.Out=[];
particle=repmat(empty_particle,nPop,1);
BestSol.Cost=inf;
for i=1:nPop
    %=====初始化粒子群位置===============
    particle(i).Position=unifrnd(VarMin,VarMax,VarSize);
    %=====初始化速度======
    particle(i).Velocity=zeros(VarSize);
    %=====目标函数计算===========
    [particle(i).Cost, particle(i).Out]=CostFunction(particle(i).Position);
    %====更新粒子个体最优=====
    particle(i).Best.Position=particle(i).Position;
    particle(i).Best.Cost=particle(i).Cost;
    particle(i).Best.Out=particle(i).Out;
    %====更新粒子群全局最优========
    if particle(i).Best.Cost<BestSol.Cost
        BestSol=particle(i).Best;
    end
end
BestCost=zeros(MaxIt,1);
%% PSO 主循环
for it=1:MaxIt
    for i=1:nPop
        %============更新速度(跟着公式写就可以啦)===============
        particle(i).Velocity = w*particle(i).Velocity ...
            +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...
            +c2*rand(VarSize).*(BestSol.Position-particle(i).Position);
        %============适用速度限制============
        particle(i).Velocity = max(particle(i).Velocity,VelMin);
        particle(i).Velocity = min(particle(i).Velocity,VelMax);
        %============更新位置================
        particle(i).Position = particle(i).Position + particle(i).Velocity;
        IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);
        particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);
        %============适用位置限制============
        particle(i).Position = max(particle(i).Position,VarMin);
        particle(i).Position = min(particle(i).Position,VarMax);
        %============计算目标函数===========
        [particle(i).Cost, particle(i).Out] = CostFunction(particle(i).Position);
        %==========更新个体最优==========
        if particle(i).Cost<particle(i).Best.Cost
            particle(i).Best.Position=particle(i).Position;
            particle(i).Best.Cost=particle(i).Cost;
            particle(i).Best.Out=particle(i).Out;
            %=======更新全局最优============
            if particle(i).Best.Cost<BestSol.Cost
                BestSol=particle(i).Best;
            end
        end
    end
    BestCost(it)=BestSol.Cost;
    disp(['迭代次数' num2str(it) ': 最优解为 = ' num2str(BestCost(it))]);
    w=w*wdamp;
end
%% 结果
figure;
plot(BestCost,'LineWidth',2);
xlabel('迭代次数');
ylabel('最优解');

完整代码:评论区回复关键字

3 结果及可视化


相关文章
|
1天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
4天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
7天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
10天前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
22 2
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
7天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
12天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。

热门文章

最新文章