💥1 概述
自然激励技术(频率法和时间法)与特征系统实现算法和模态凝聚算法。用于识别受高斯白噪声激励影响的2DOF系统,并增加激励和响应的不确定性(也是高斯白噪声)。
具有模式凝聚的1时域NExT-ERA
----------------------------------------------------------------------
[结果] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)
输入:
data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据
引用的总长度: 参考通道的维科 .its 维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别采用每个参考通道)maxlags: 互相关函数
fs 中的滞后数: 采样频率
ncols: 汉克尔矩阵中的列数(大于 2/3*(maxlags+1) )
nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割:模式顺序的初始截止值 maxcut:模式顺序
偏移的最大截止值:最后一行和列块中的移位值(增加 EMAC 灵敏度)通常 =10
EMAC_option:如果此值等于 1,则 EMAC 将与列数无关(仅根据可观测性矩阵计算,而不是从可控性计算)
LimCMI:模式的最小允许CMI LimMAC & LimFreq:MAC的最小值和频率差的最大值,假设两种模式
指的是相同的实模
Plot_option:如果1绘制稳定图
输出:
结果:由以下组件
组成的结构 参数: NaFreq : 固有频率矢量
阻尼比:阻尼比矢量
模态形状:振型矩阵
指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性
MPC:模态相位共线性
CMI:一致模式指示器
具有模式凝聚的2频域NExT-ERA
----------------------------------------------------------------------
[结果] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)
输入:
data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据
refch 的总长度: 参考通道的总长度 .其维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别获取每个参考通道)
window: 窗口大小以获得光谱密度
N: 窗口数 p: 窗口
之间的重叠比率。从 0 到 1
fs: 采样频率
ncols: 汉克尔矩阵中的列数(大于 2/3*(ceil(窗口/2+1)-1))nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割: 模式阶数的初始截止值 maxcut: 模式阶
移位的最大截止值: 最后一行和列块中的移位值(增加 EMAC 灵敏度)
通常 =10
EMAC_option:如果此值等于 1,则 EMAC 将独立于列数(仅根据可观测性矩阵计算,而不是从可控性计算)LimCMI:
模式的最小允许 CMI LimMAC 和 LimFreq:MAC 的最小值和频率差的最大值,假设两种模式
指的是相同的实Plot_option模式
: 如果 1 绘制稳定图
输出:
结果:由以下组件
组成的结构 参数: NaFreq : 固有频率矢量
阻尼比:阻尼比矢量
模态形状:振型矩阵
指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性
MPC:模态相位共线性
CMI:一致模式指示器
📚2 运行结果
🌈3 Matlab代码实现
部分代码:
clc; clear; close all; %Model Parameters and excitation %-------------------------------------------------------------------------- M=[1 0; 0 1]; K=[2 -1; -1 1]*5; C=0.0001*M+0.0001*K; f=2*randn(2,10000); fs=100; %Apply modal superposition to get response %-------------------------------------------------------------------------- n=size(f,1); dt=1/fs; %sampling rate [Vectors, Values]=eig(K,M); Freq=sqrt(diag(Values))/(2*pi); % undamped natural frequency steps=size(f,2); Mn=diag(Vectors'*M*Vectors); % uncoupled mass Cn=diag(Vectors'*C*Vectors); % uncoupled damping Kn=diag(Vectors'*K*Vectors); % uncoupled stifness wn=sqrt(diag(Values)); zeta=Cn./(sqrt(2.*Mn.*Kn)); % damping ratio wd=wn.*sqrt(1-zeta.^2); fn=Vectors'*f; % generalized input force matrix t=[0:dt:dt*steps-dt]; for i=1:1:n h(i,:)=(1/(Mn(i)*wd(i))).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t); %transfer function of displacement hd(i,:)=(1/(Mn(i)*wd(i))).*(-zeta(i).*wn(i).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)+wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)); %transfer function of velocity hdd(i,:)=(1/(Mn(i)*wd(i))).*((zeta(i).*wn(i))^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)-zeta(i).*wn(i).*wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)-wd(i).*((zeta(i).*wn(i)).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t))-wd(i)^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)); %transfer function of acceleration qq=conv(fn(i,:),h(i,:))*dt; qqd=conv(fn(i,:),hd(i,:))*dt; qqdd=conv(fn(i,:),hdd(i,:))*dt; q(i,:)=qq(1:steps); % modal displacement qd(i,:)=qqd(1:steps); % modal velocity qdd(i,:)=qqdd(1:steps); % modal acceleration end x=Vectors*q; %displacement v=Vectors*qd; %vecloity a=Vectors*qdd; %vecloity %Add noise to excitation and response %-------------------------------------------------------------------------- f2=f+0.1*randn(2,10000); a2=a+0.1*randn(2,10000); v2=v+0.1*randn(2,10000); x2=x+0.1*randn(2,10000); %Plot displacement of first floor without and with noise %-------------------------------------------------------------------------- figure; subplot(3,2,1) plot(t,f(1,:)); xlabel('Time (sec)'); ylabel('Force1'); title('First Floor'); subplot(3,2,2) plot(t,f(2,:)); xlabel('Time (sec)'); ylabel('Force2'); title('Second Floor'); subplot(3,2,3) plot(t,x(1,:)); xlabel('Time (sec)'); ylabel('DSP1'); subplot(3,2,4) plot(t,x(2,:)); xlabel('Time (sec)'); ylabel('DSP2'); subplot(3,2,5) plot(t,x2(1,:)); xlabel('Time (sec)'); ylabel('DSP1+Noise'); subplot(3,2,6) plot(t,x2(2,:)); xlabel('Time (sec)'); ylabel('DSP2+Noise'); %Identify modal parameters using displacement with added uncertainty %-------------------------------------------------------------------------- data=x2; refch=2; maxlags=999; window=2000; N=5; p=0; ncols=800; nrows=200; initialcut=2; maxcut=20; shift=10; EMAC_option=1; LimCMI=75; LimMAC=50; LimFreq=0.5; Plot_option=1; figure; [Result1] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option); figure; [Result2] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option); %Plot real and identified first modes to compare between them %-------------------------------------------------------------------------- figure; plot([0 ; -Vectors(:,1)],[0 1 2],'r*-'); hold on plot([0 ;Result1.Parameters.ModeShape(:,1)],[0 1 2],'go-.'); hold on plot([0 ;Result2.Parameters.ModeShape(:,1)],[0 1 2],'y^--'); hold on plot([0 ; -Vectors(:,2)],[0 1 2],'b^-'); hold on plot([0 ;Result1.Parameters.ModeShape(:,2)],[0 1 2],'mv-.'); hold on plot([0 ;Result2.Parameters.ModeShape(:,2)],[0 1 2],'co--'); hold off title('Real and Identified Mode Shapes'); legend('Mode 1 (Real)','Mode 1 (Identified using NExTF-ERA(Condensed))','Mode 1 (Identified using NExTT-ERA(Condensed))'... ,'Mode 2 (Real)','Mode 2 (Identified using NExTF-ERA(Condensed))','Mode 2 (Identified using NExTT-ERA(Condensed))'); xlabel('Amplitude'); ylabel('Floor'); grid on; daspect([1 1 1]); %Display real and Identified natural frequencies and damping ratios %-------------------------------------------------------------------------- disp('Real and Identified Natural Drequencies and Damping Ratios of the First Mode'); disp(strcat('Real: Frequency=',num2str(Freq(1)),'Hz',' Damping Ratio=',num2str(zeta(1)*100),'%')); disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(1)),'%')); disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(1)),'%')); disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(1)),'%')); disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(1)),'%')); disp('-----------') disp('Real and Identified Natural Drequencies and Damping Ratios of the Second Mode'); disp(strcat('Real: Frequency=',num2str(Freq(2)),'Hz',' Damping Ratio=',num2str(zeta(2)*100),'%')); disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(2)),'%')); disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(2)),'%')); disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(2)),'%')); disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(2)),'%'));
🎉4 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1] R. Pappa, K. Elliott, and A. Schenk, “A consistent-mode indicator for the eigensystem realization algorithm,” Journal of Guidance Control and Dynamics (1993), 1993.
[2] R. S. Pappa, G. H. James, and D. C. Zimmerman, “Autonomous modal identification of the space shuttle tail rudder,” Journal of Spacecraft and Rockets, vol. 35, no. 2, pp. 163–169, 1998.
[3] James, G. H., Thomas G. Carne, and James P. Lauffer. "The natural excitation technique (NExT) for modal parameter extraction from operating structures." Modal Analysis-the International Journal of Analytical and Experimental Modal Analysis 10.4 (1995): 260.
[4] Al Rumaithi, Ayad, "Characterization of Dynamic Structures Using Parametric and Non-parametric System Identification Methods" (2014). Electronic Theses and Dissertations. 1325.
[5] Al-Rumaithi, Ayad, Hae-Bum Yun, and Sami F. Masri. "A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes." Model Validation and Uncertainty Quantification, Volume 3. Springer, Cham, 2015. 113-133.