m基于FPGA的256点FFT傅里叶变换verilog实现,含testbench,不使用IP核

简介: m基于FPGA的256点FFT傅里叶变换verilog实现,含testbench,不使用IP核

1.算法仿真效果

本系统进行了Vivado2019.2平台的开发,其中Vivado2019.2仿真结果如下:
37ff41d1cd54f43d2a57640a1fdfebda_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
dadeb72cd16fcb46dde8d4ada5d74d5a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
523b807290a72ac256069281eb839184_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
傅里叶变换(Fourier Transform)是一种重要的信号处理技术,用于将一个时域信号转换为频域表示,分析信号的频率成分。FFT(Fast Fourier Transform)是一种高效的傅里叶变换算法,可以加速傅里叶变换的计算过程。给定一个时域离散信号序列$x[n]$,其傅里叶变换$X[k]$定义为:

cd14f62334b28689c36ee12b64614f5c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    FFT是一种高效的计算傅里叶变换的算法,可以降低傅里叶变换的计算复杂度。对于长度为$N=2^m$的信号序列,其中$m$是整数,快速傅里叶变换可以通过分治法和蝶形运算来实现。其中,分治法将信号分为两个子序列,分别进行傅里叶变换,然后通过蝶形运算组合子序列的结果。256点FFT是指将长度为256的时域信号序列转换为频域表示的过程。对于256点FFT,信号序列长度$N=256$,可以使用快速傅里叶变换算法高效地计算。

   基于FPGA的256点FFT傅里叶变换Verilog实现在数字信号处理、通信系统和图像处理等领域有广泛的应用。由于FPGA具有可编程性和并行计算能力,能够高效地实现FFT算法,因此被广泛用于嵌入式系统、通信系统和高性能计算领域。 

基于FPGA的256点FFT傅里叶变换Verilog实现面临以下几个主要难点:

   实现FFT模块需要理解和实现快速傅里叶变换算法,包括蝶形运算和迭代计算过程。算法的正确性和效率对于整个FFT实现的成功至关重要。

  在FPGA实现过程中,需要考虑FPGA资源的有限性。因为FFT模块需要大量的计算和存储资源,如何在有限的FPGA资源约束下完成256点FFT的实现是一个挑战。

   在FPGA中,时序和并行性是需要重点考虑的问题。FFT模块的时序和并行性设计直接影响整个实现的性能和稳定性,需要仔细调整和优化。

   基于FPGA的256点FFT傅里叶变换Verilog实现是一个重要的信号处理技术,在数字信号处理、通信系统和图像处理等领域有广泛的应用。在FPGA平台上高效地实现256点FFT傅里叶变换。

3.Verilog核心程序
````timescale 1ns / 1ps

module TEST();

reg i_clk;
reg i_rst;
reg start;

wire [15 : 0] m_axis_data_tdata;
dds_compiler_0 your_instance_name (
.aclk(i_clk), // input wire aclk
.aresetn(~i_rst), // input wire aresetn
.s_axis_config_tvalid(1'b1), // input wire s_axis_config_tvalid
.s_axis_config_tdata(32'd10000000), // input wire [31 : 0] s_axis_config_tdata
.m_axis_data_tvalid( ), // output wire m_axis_data_tvalid
.m_axis_data_tdata(m_axis_data_tdata), // output wire [15 : 0] m_axis_data_tdata
.m_axis_phase_tvalid(), // output wire m_axis_phase_tvalid
.m_axis_phase_tdata() // output wire [31 : 0] m_axis_phase_tdata
);

wire signed[7:0]Dreal = m_axis_data_tdata[15:8];
wire signed[7:0]Dimag = m_axis_data_tdata[7:0];

wire signed[27:0]o_fft_abs;

fft256 fft256_u(
.CLK (i_clk),
.RST (i_rst),
.ED (1'b1),
.START(start),
.SHIFT(4'b0000),
.DR ({Dreal[7],Dreal[7],Dreal[7],Dreal[7],Dreal[7],Dreal[7:3]}),
.DI (0),
.RDY (),
.OVF1 (),
.OVF2 (),
.ADDR (),
.o_fft_abs (o_fft_abs)
);

initial
begin
i_clk = 1'b1;
i_rst = 1'b1;
start = 1'b0;

1000

i_rst = 1'b0;
start = 1'b1;

10

start = 1'b0;
end

always #5 i_clk=~i_clk;

endmodule
```

相关文章
|
29天前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
1月前
|
算法 测试技术 开发工具
基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
该系统在原有的QPSK调制解调基础上,新增了高斯信道和误码率统计模块,验证了不同SNR条件下的QPSK误码性能。系统包括数据生成、QPSK调制与解调等模块,使用Vivado 2019.2进行仿真,展示了SNR分别为15dB、10dB、5dB和1dB时的误码情况。系统采用Verilog语言实现,具有高效、可靠的特点。
37 3
|
16天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于Vivado 2019.2实现了2ASK调制解调系统,新增高斯信道及误码率统计模块,验证了不同SNR条件下的ASK误码表现。2ASK通过改变载波振幅传输二进制信号,其调制解调过程包括系统设计、Verilog编码、仿真测试及FPGA实现,需考虑实时性与并行性,并利用FPGA资源优化非线性操作。
27 0
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
75 6
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的BPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于Vivado2019.2,在原有BPSK调制解调基础上新增高斯信道及误码率统计模块,可测试不同SNR条件下的误码性能。仿真结果显示,在SNR=0dB时误码较高,随着SNR增至5dB,误码率降低。理论上,BPSK与2ASK信号形式相似,但基带信号不同。BPSK信号功率谱仅含连续谱,且其频谱特性与2ASK相近。系统采用Verilog实现,包括调制、加噪、解调及误码统计等功能,通过改变`i_SNR`值可调整SNR进行测试。
31 1
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于FSK调制解调,通过Vivado 2019.2仿真验证了不同信噪比(SNR)下的误码率表现。加入高斯信道与误码统计模块后,仿真结果显示:SNR=16dB时误码极少;随SNR下降至0dB,误码逐渐增多。FSK利用频率变化传输信息,因其易于实现且抗干扰性强,在中低速通信中有广泛应用。2FSK信号由连续谱与离散谱构成,相位连续与否影响功率谱密度衰减特性。Verilog代码实现了FSK调制、加性高斯白噪声信道及解调功能,并计算误码数量。
46 5
|
3月前
|
C语言 芯片 异构计算
FPGA新起点V1开发板(六-语法篇)——verilog简介+基础语法
FPGA新起点V1开发板(六-语法篇)——verilog简介+基础语法
|
5月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
138 7
|
5月前
|
算法 异构计算
m基于FPGA的电子钟verilog实现,可设置闹钟,包含testbench测试文件
该文介绍了基于FPGA的电子钟设计,利用Vivado2019.2平台进行开发并展示测试结果。电子钟设计采用Verilog硬件描述语言,核心包括振荡器、分频器和计数器。时间显示为2个十进制格式,闹钟功能通过存储器和比较器实现,当当前时间等于设定时间时触发。文中给出了Verilog核心程序示例,展示了时钟信号、设置信号及输出的交互。
168 2
|
5月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。

热门文章

最新文章

下一篇
无影云桌面