openBuddy基于LLaMA2跨语言对话模型首发魇搭社区!(2)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: openBuddy基于LLaMA2跨语言对话模型首发魇搭社区!

七、模型训练最佳实践

开源代码链接https://github.com/modelscope/modelscope/blob/master/examples/pytorch/llm/llm_sft.py

准备环境

# Avoid cuda initialization caused by library import (e.g. peft, accelerate)
from _parser import *
# argv = parse_device(['--device', '1'])
argv = parse_device()

命令行参数导入:

from utils import *
@dataclass
class SftArguments:
    seed: int = 42
    model_type: str = field(
        default='openbuddy-llama2-13b', metadata={'choices': list(MODEL_MAPPER.keys())})
    # baichuan-7b: 'lora': 16G; 'full': 80G
    sft_type: str = field(
        default='lora', metadata={'choices': ['lora', 'full']})
    ignore_args_error: bool = True  # False: notebook compatibility
    dataset: str = field(
        default='alpaca-en,alpaca-zh',
        metadata={'help': f'dataset choices: {list(DATASET_MAPPER.keys())}'})
    dataset_seed: int = 42
    dataset_sample: Optional[int] = None
    dataset_test_size: float = 0.01
    prompt: str = DEFAULT_PROMPT
    max_length: Optional[int] = 2048
    lora_target_modules: Optional[List[str]] = None
    lora_rank: int = 8
    lora_alpha: int = 32
    lora_dropout_p: float = 0.1
    gradient_checkpoint: bool = True
    batch_size: int = 1
    max_epochs: int = 1
    learning_rate: Optional[float] = None
    weight_decay: float = 0.01
    n_accumulate_grad: int = 16
    grad_clip_norm: float = 1.
    warmup_iters: int = 200
    save_trainer_state: Optional[bool] = None
    eval_interval: int = 500
    last_save_interval: Optional[int] = None
    last_max_checkpoint_num: int = 1
    best_max_checkpoint_num: int = 1
    logging_interval: int = 5
    tb_interval: int = 5
    def __post_init__(self):
        if self.sft_type == 'lora':
            if self.learning_rate is None:
                self.learning_rate = 1e-4
            if self.save_trainer_state is None:
                self.save_trainer_state = True
            if self.last_save_interval is None:
                self.last_save_interval = self.eval_interval
        elif self.sft_type == 'full':
            if self.learning_rate is None:
                self.learning_rate = 1e-5
            if self.save_trainer_state is None:
                self.save_trainer_state = False  # save disk space
            if self.last_save_interval is None:
                # Saving the model takes a long time
                self.last_save_interval = self.eval_interval * 4
        else:
            raise ValueError(f'sft_type: {self.sft_type}')
        if self.lora_target_modules is None:
            self.lora_target_modules = MODEL_MAPPER[self.model_type]['lora_TM']
args, remaining_argv = parse_args(SftArguments, argv)
if len(remaining_argv) > 0:
    if args.ignore_args_error:
        logger.warning(f'remaining_argv: {remaining_argv}')
    else:
        raise ValueError(f'remaining_argv: {remaining_argv}')

导入模型:

seed_everything(args.seed)
# ### Loading Model and Tokenizer
support_bf16 = torch.cuda.is_bf16_supported()
if not support_bf16:
    logger.warning(f'support_bf16: {support_bf16}')
model, tokenizer, model_dir = get_model_tokenizer(
    args.model_type, torch_dtype=torch.bfloat16)
if args.gradient_checkpoint:
    # baichuan-13b does not implement the `get_input_embeddings` function
    if args.model_type == 'baichuan-13b':
        model.get_input_embeddings = MethodType(
            lambda self: self.model.embed_tokens, model)
    model.gradient_checkpointing_enable()
    model.enable_input_require_grads()

准备LoRA:

# ### Preparing lora
if args.sft_type == 'lora':
    lora_config = LoRAConfig(
        replace_modules=args.lora_target_modules,
        rank=args.lora_rank,
        lora_alpha=args.lora_alpha,
        lora_dropout=args.lora_dropout_p)
    logger.info(f'lora_config: {lora_config}')
    model = Swift.prepare_model(model, lora_config)
show_freeze_layers(model)
print_model_info(model)
# check the device and dtype of the model
_p: Tensor = list(model.parameters())[-1]
logger.info(f'device: {_p.device}, dtype: {_p.dtype}')

导入datasets:

# ### Loading Dataset
dataset = get_dataset(args.dataset)
train_dataset, val_dataset = process_dataset(dataset,
                                             args.dataset_test_size,
                                             args.dataset_sample,
                                             args.dataset_seed)
tokenize_func = partial(
    tokenize_function,
    tokenizer=tokenizer,
    prompt=args.prompt,
    max_length=args.max_length)
train_dataset = train_dataset.map(tokenize_func)
val_dataset = val_dataset.map(tokenize_func)
del dataset
# Data analysis
stat_dataset(train_dataset)
stat_dataset(val_dataset)
data_collator = partial(data_collate_fn, tokenizer=tokenizer)
print_example(train_dataset[0], tokenizer)

配置Config:

# ### Setting Config
cfg_file = os.path.join(model_dir, 'configuration.json')
T_max = get_T_max(
    len(train_dataset), args.batch_size, args.max_epochs, True)
work_dir = get_work_dir(f'runs/{args.model_type}')
config = Config({
    'train': {
        'dataloader': {
            'batch_size_per_gpu': args.batch_size,
            'workers_per_gpu': 1,
            'shuffle': True,
            'drop_last': True,
            'pin_memory': True
        },
        'max_epochs':
        args.max_epochs,
        'work_dir':
        work_dir,
        'optimizer': {
            'type': 'AdamW',
            'lr': args.learning_rate,
            'weight_decay': args.weight_decay,
            'options': {
                'cumulative_iters': args.n_accumulate_grad,
                'grad_clip': {
                    'norm_type': 2,
                    'max_norm': args.grad_clip_norm
                }
            }
        },
        'lr_scheduler': {
            'type': 'CosineAnnealingLR',
            'T_max': T_max,
            'eta_min': args.learning_rate * 0.1,
            'options': {
                'by_epoch': False,
                'warmup': {
                    'type': 'LinearWarmup',
                    'warmup_ratio': 0.1,
                    'warmup_iters': args.warmup_iters
                }
            }
        },
        'hooks': [
            {
                'type': 'CheckpointHook',
                'by_epoch': False,
                'interval': args.last_save_interval,
                'max_checkpoint_num': args.last_max_checkpoint_num,
                'save_trainer_state': args.save_trainer_state
            },
            {
                'type': 'EvaluationHook',
                'by_epoch': False,
                'interval': args.eval_interval
            },
            {
                'type': 'BestCkptSaverHook',
                'metric_key': 'loss',
                'save_best': True,
                'rule': 'min',
                'max_checkpoint_num': args.best_max_checkpoint_num,
                'save_trainer_state': args.save_trainer_state
            },
            {
                'type': 'TextLoggerHook',
                'by_epoch': True,  # Whether EpochBasedTrainer is used
                'interval': args.logging_interval
            },
            {
                'type': 'TensorboardHook',
                'by_epoch': False,
                'interval': args.tb_interval
            }
        ]
    },
    'evaluation': {
        'dataloader': {
            'batch_size_per_gpu': args.batch_size,
            'workers_per_gpu': 1,
            'shuffle': False,
            'drop_last': False,
            'pin_memory': True
        },
        'metrics': [{
            'type': 'my_metric',
            'vocab_size': tokenizer.vocab_size
        }]
    }
})

开启微调:

# ### Finetuning
def cfg_modify_fn(cfg: Config) -> Config:
    cfg.update(config)
    return cfg
trainer = EpochBasedTrainer(
    model=model,
    cfg_file=cfg_file,
    data_collator=data_collator,
    train_dataset=train_dataset,
    eval_dataset=val_dataset,
    remove_unused_data=True,
    seed=42,
    cfg_modify_fn=cfg_modify_fn,
)
trainer.train()

可视化:

Tensorboard 命令: (e.g.)

tensorboard --logdir runs/openbuddy-llama2-13b/v0-20230726-172019 --port 6006

# ### Visualization
tb_dir = os.path.join(work_dir, 'tensorboard_output')
plot_images(tb_dir, ['loss'], 0.9)

训练和验证损失

资源消耗

openbuddy-llama2-13b用lora的方式训练的现存占用如下,大约34 G

、推理训练后的模型

开源代码链接:https://github.com/modelscope/modelscope/blob/master/examples/pytorch/llm/llm_infer.py

# ### Setting up experimental environment.
# Avoid cuda initialization caused by library import (e.g. peft, accelerate)
from _parser import *
# argv = parse_device(['--device', '1'])
argv = parse_device()
from utils import *
@dataclass
class InferArguments:
    model_type: str = field(
        default='openbuddy-llama2-13b', metadata={'choices': list(MODEL_MAPPER.keys())})
    sft_type: str = field(
        default='lora', metadata={'choices': ['lora', 'full']})
    ckpt_path: str = '/path/to/your/iter_xxx.pth'
    eval_human: bool = False  # False: eval test_dataset
    ignore_args_error: bool = True  # False: notebook compatibility
    dataset: str = field(
        default='alpaca-en,alpaca-zh',
        metadata={'help': f'dataset choices: {list(DATASET_MAPPER.keys())}'})
    dataset_seed: int = 42
    dataset_sample: Optional[int] = None
    dataset_test_size: float = 0.01
    prompt: str = DEFAULT_PROMPT
    max_length: Optional[int] = 2048
    lora_target_modules: Optional[List[str]] = None
    lora_rank: int = 8
    lora_alpha: int = 32
    lora_dropout_p: float = 0.1
    max_new_tokens: int = 512
    temperature: float = 0.9
    top_k: int = 50
    top_p: float = 0.9
    def __post_init__(self):
        if self.lora_target_modules is None:
            self.lora_target_modules = MODEL_MAPPER[self.model_type]['lora_TM']
        if not os.path.isfile(self.ckpt_path):
            raise ValueError(
                f'Please enter a valid ckpt_path: {self.ckpt_path}')
args, remaining_argv = parse_args(InferArguments, argv)
if len(remaining_argv) > 0:
    if args.ignore_args_error:
        logger.warning(f'remaining_argv: {remaining_argv}')
    else:
        raise ValueError(f'remaining_argv: {remaining_argv}')
# ### Loading Model and Tokenizer
support_bf16 = torch.cuda.is_bf16_supported()
if not support_bf16:
    logger.warning(f'support_bf16: {support_bf16}')
model, tokenizer, _ = get_model_tokenizer(
    args.model_type, torch_dtype=torch.bfloat16)
# ### Preparing lora
if args.sft_type == 'lora':
    lora_config = LoRAConfig(
        replace_modules=args.lora_target_modules,
        rank=args.lora_rank,
        lora_alpha=args.lora_alpha,
        lora_dropout=args.lora_dropout_p,
        pretrained_weights=args.ckpt_path)
    logger.info(f'lora_config: {lora_config}')
    model = Swift.prepare_model(model, lora_config)
elif args.sft_type == 'full':
    state_dict = torch.load(args.ckpt_path, map_location='cpu')
    model.load_state_dict(state_dict)
else:
    raise ValueError(f'args.sft_type: {args.sft_type}')
# ### Inference
tokenize_func = partial(
    tokenize_function,
    tokenizer=tokenizer,
    prompt=args.prompt,
    max_length=args.max_length)
streamer = TextStreamer(
    tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_config = GenerationConfig(
    max_new_tokens=args.max_new_tokens,
    temperature=args.temperature,
    top_k=args.top_k,
    top_p=args.top_p,
    do_sample=True,
    pad_token_id=tokenizer.eos_token_id)
logger.info(f'generation_config: {generation_config}')
if args.eval_human:
    while True:
        instruction = input('<<< ')
        data = {'instruction': instruction}
        input_ids = tokenize_func(data)['input_ids']
        inference(input_ids, model, tokenizer, streamer, generation_config)
        print('-' * 80)
else:
    dataset = get_dataset(args.dataset)
    _, test_dataset = process_dataset(dataset, args.dataset_test_size,
                                      args.dataset_sample,
                                      args.dataset_seed)
    mini_test_dataset = test_dataset.select(range(10))
    del dataset
    for data in mini_test_dataset:
        output = data['output']
        data['output'] = None
        input_ids = tokenize_func(data)['input_ids']
        inference(input_ids, model, tokenizer, streamer, generation_config)
        print()
        print(f'[LABELS]{output}')
        print('-' * 80)
        # input('next[ENTER]')
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
8月前
|
自然语言处理 开发者 异构计算
社区供稿 | Llama3-8B中文版!OpenBuddy发布新一代开源中文跨语言模型
此次发布的是在3天时间内,我们对Llama3-8B模型进行首次中文跨语言训练尝试的结果:OpenBuddy-Llama3-8B-v21.1-8k。
|
8月前
|
自然语言处理 数据可视化 物联网
Qwen1.5-MoE开源,魔搭社区推理训练最佳实践教程来啦
通义千问团队推出Qwen系列的首个MoE模型,Qwen1.5-MoE-A2.7B。
|
8月前
|
数据可视化 物联网 Swift
谷歌发布开源LLM Gemma,魔搭社区评测+最佳实践教程来啦!
Gemma是由Google推出的一系列轻量级、先进的开源模型,他们是基于 Google Gemini 模型的研究和技术而构建。
|
数据可视化 PyTorch 算法框架/工具
零一万物Yi-34B-Chat 微调模型及量化版开源!魔搭社区最佳实践教程!
11月24日,零一万物基正式发布并开源微调模型 Yi-34B-Chat,可申请免费商用。同时,零一万物还为开发者提供了 4bit/8bit 量化版模型,Yi-34B-Chat 4bit 量化版模型可以直接在消费级显卡(如RTX3090)上使用。魔搭社区已支持下载、推理训练体验,并推出相关教程,欢迎大家来玩!
|
数据可视化 测试技术 PyTorch
智谱ChatGLM3魔搭最佳实践教程来了!
ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上
|
8月前
|
自然语言处理 物联网 Swift
零一万物开源Yi-VL多模态大模型,魔搭社区推理&微调最佳实践来啦!
近期,零一万物Yi系列模型家族发布了其多模态大模型系列,Yi Vision Language(Yi-VL)多模态语言大模型正式面向全球开源。
|
3月前
|
计算机视觉
Deepseek开源多模态LLM模型框架Janus,魔搭社区最佳实践
deepseek近期推出了简单、统一且灵活的多模态框架Janus,它能够统一处理多模态理解和生成任务。让我们一起来了解一下吧。
|
8月前
|
安全 测试技术 Swift
Llama 3开源,魔搭社区手把手带你推理,部署,微调和评估
Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。
Llama 3开源,魔搭社区手把手带你推理,部署,微调和评估
|
6月前
|
数据可视化 物联网 Swift
谷歌开源Gemma2!魔搭社区推理、微调最佳实践教程
Google面向全球研究人员和开发者发布并开源 Gemma 2 大语言模型!本次Gemma 2 系列为轻量级开放模型,提供9B和27B参数两种尺寸,采用全新的架构设计,性能表现优异。
|
机器学习/深度学习 API 开发工具

热门文章

最新文章