30分钟,通过ModelScope平台和开源LLM打造个人知识库 QA Bot(2)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 30分钟,通过ModelScope平台和开源LLM打造个人知识库 QA Bot

向量算法的选型

完成了文本导入后,可以尝试测试一下效果了。

Chroma向量库中原生的embeddings效果不理想,使用的是 all-MiniLM-L6-v2 算法来进行向量嵌入。这个算法来自于 Sentence Transformers 库。Sentence Transformers 的还有其他算法:

Model

Performance Semantic Search (6 Datasets)

Queries (GPU / CPU) per sec.

multi-qa-MiniLM-L6-dot-v1

49.19

18,000 / 750

multi-qa-distilbert-dot-v1

52.51

7,000 / 350

multi-qa-mpnet-base-dot-v1

57.60

4,000 / 170

拿西游记的全文向量化导入后,查询 东胜神洲(孙悟空的老家花果山) 相关的信息,发现基本无法命中结果。

image.png

于是重新修改向量的算法,看了一下,如果要自定义向量算法,只需要按照以下的数据导入到库里就行。

collection.add(
   文章内容:documents=["doc1", "doc2", "doc3", ...],   
   向量内容:embeddings=[[1.1, 2.3, 3.2], [4.5, 6.9, 4.4], [1.1, 2.3, 3.2], ...],
   原始数据:metadatas=[{"chapter": "3", "verse": "16"}, {"chapter": "3", "verse": "5"}, {"chapter": "29", "verse": "11"}, ...],
   ID:ids=["id1", "id2", "id3", ...]
)

我们在魔搭ModelScope社区。

https://modelscope.cn/models/damo/nlp_corom_sentence-embedding_chinese-base/summary上查看有关该模型的详细信息 。 在不同的领域还可以选择不同的的CoROM模型。

image.png

我们对文本分割器和向量库进行了修改后,重新导入了文本,并进行了查询,这次终于成功地获得了有关东胜神洲的相关信息。

image.png

最终效果

把模型+Prompt+向量算法+向量数据库组合起来后,选用的技术和框架如下图所示:

image.png

image.png

总结

用手工编写的方式实现了完整基于个人知识库的QA Bot,采用手工编写的方式。相比于langchain,这种方法具有以下优点:

  • 可以通过SaaS服务对每个部分进行加速,
  • 每个部分都可以轻松地进行自定义修改。通过简单修改modelid可以使用modelscope的社区的模型,更加适合中文场景。
  • 在满足硬件条件的情况下,可以轻松地将其改为分布式架构,以处理高频访问。

然而,我们可以看到回答的效果仍然不是很好, 文本分割和向量化的过程会直接影响结果,但是对比直接使用langchain,灵活性和中文的相关性好了很多(不过langchain也可以改向量算法)。

在专业领域来说,如果有已经构建好知识图谱的数据,使用这种方式可能会取得非常好的效果。

30分钟快速体验

以下代码已经在modelscope社区的notebook的环境中测试通过。从编写代码到回复,大概需要30分钟左右即可完成,非常适合测试和验证。

1、 安装依赖 ,为了方便使用,我已经把上述的代码整合成一个微型框架 vectorGPTBot 中。

pip install protobuf==3.20.0 transformers==4.27.1 icetk cpm_kernels chromadb
pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
pip install vectorGPTBot=="0.1.6" -i https://pypi.Python.org/simple/

2、 在modelscope的环境中,由于pyhton是3.7的版本。请按照以下步骤修改文件

/opt/conda/lib/python3.7/site-packages/chromadb/api/types.py 

将第一行修改为以下两行:

from typing import Optional, Union, Dict, Sequence, TypeVar, List
from typing_extensions import Literal, TypedDict, Protocol

保存文件并退出。

3、 启动

有三个参数可以自由定义 , 后面两个可以去modelscope社区根据自己的需求进行更换。

v= mainClass(
'/mnt/workspace/test2', #向量数据库保存的路径
"damo/nlp_corom_sentence-embedding_chinese-base", #文本向量算法
"ZhipuAI/ChatGLM-6B", #llm模型 
)

核心是两个命令

  • v.put_data  把数据导入向量库
  • v.query_data 查询数据

from vectorGPTBot.vectorGPTBot import mainClass
v= mainClass(
'/mnt/workspace/test2', #向量数据库保存的路径
"damo/nlp_corom_sentence-embedding_chinese-base", #文本向量算法
"ZhipuAI/ChatGLM-6B", #llm模型 
)
v.put_data([
    '你是谁?我是向量知识库问答机器人。',
    '你可以做什么?回答问题。',
    '吃了海鲜后是不能再喝牛奶的,因为牛奶中含得有维生素C,如果海鲜喝牛奶一起服用会对人体造成一定的伤害',
    '吃海鲜是不能同时喝牛奶吃水果,这个至少间隔6小时以上才可以。',
    '吃海鲜是不可以吃柠檬的因为其中的维生素C会和海鲜中的矿物质形成砷。',
])
v.query_data('你是谁?')

image.png

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
9天前
|
人工智能 自然语言处理 前端开发
CodeArena:在线 LLM 编程竞技场!用于测试不同开源 LLM 的编程能力,实时更新排行榜
CodeArena 是一个在线平台,用于测试和比较不同大型语言模型(LLM)的编程能力。通过实时显示多个 LLM 的代码生成过程和结果,帮助开发者选择适合的 LLM,并推动 LLM 技术的发展。
39 7
CodeArena:在线 LLM 编程竞技场!用于测试不同开源 LLM 的编程能力,实时更新排行榜
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】LLM主流开源大模型介绍
【AI大模型】LLM主流开源大模型介绍
|
2月前
|
计算机视觉
Deepseek开源多模态LLM模型框架Janus,魔搭社区最佳实践
deepseek近期推出了简单、统一且灵活的多模态框架Janus,它能够统一处理多模态理解和生成任务。让我们一起来了解一下吧。
|
3月前
|
算法 测试技术 AI芯片
CPU反超NPU,llama.cpp生成速度翻5倍!LLM端侧部署新范式T-MAC开源
【9月更文挑战第7天】微软研究院提出了一种名为T-MAC的创新方法,旨在解决大型语言模型在资源受限的边缘设备上高效部署的问题。T-MAC通过查表法在CPU上实现低比特LLM的高效推理,支持混合精度矩阵乘法,无需解量化。其通过位级查表实现统一且可扩展的解决方案,优化数据布局和重用率,显著提升了单线程和多线程下的mpGEMV及mpGEMM性能,并在端到端推理吞吐量和能效方面表现出色。然而,表量化和快速聚合技术可能引入近似和数值误差,影响模型准确性。论文详见:[链接](https://www.arxiv.org/pdf/2407.00088)。
188 10
|
4月前
|
人工智能 物联网 大数据
开源大赛 | 第七届CCF开源创新大赛ModelScope赛题解读
第七届CCF开源创新大赛由CCF主办,长沙理工大学和CCF开源发展委员会联合承办,以国家“十四五”开源生态发展战略布局为导向,重点关注人工智能、大数据、芯片设计、物联网等领域的开源软件,旨在创建一个展示、交流和合作的平台,激发开源创新精神,培养开源人才,并促进高质量的开源生态系统建设。
|
4月前
|
数据采集 人工智能 监控
赌你一定想要!OpenDataLab首款大模型多模态标注平台Label-LLM正式开源
Label-LLM 是一款专为大模型训练设计的多模态文本对话标注工具,支持团队协作,让标注工作变得简单高效。它不仅涵盖丰富的任务类型,如回答采集、偏好收集和内容评估等,还支持多模态数据标注,包括图像、视频和音频。Label-LLM具备预标注载入功能,能大幅提升工作效率,并提供全方位的任务管理与可视化分析,确保标注质量。快来体验这款强大的标注平台吧![部署文档](https://github.com/opendatalab/LabelLLM)
833 0
赌你一定想要!OpenDataLab首款大模型多模态标注平台Label-LLM正式开源
|
4月前
|
人工智能 开发框架 物联网
赢万元奖金 | 第七届CCF开源创新大赛ModelScope开源模型应用挑战赛开启报名!
第七届CCF开源创新大赛(后简称“大赛”) 由中国计算机学会(CCF)主办,长沙理工大学、CCF开源发展委员会联合承办。
|
5月前
|
算法 API 数据中心
魔搭社区利用 NVIDIA TensorRT-LLM 加速开源大语言模型推理
魔搭社区于 2022 年 11 月初创建,首次在业界提出了 “模型即服务”( MaaS, Model as a Service)的理念。
|
5月前
|
编解码 文字识别 计算机视觉
寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM
【7月更文挑战第10天】【寒武纪1号】- 谢赛宁、Yann LeCun团队发布开源多模态LLM,含8B至34B规模模型,创新空间视觉聚合器(SVA)提升视觉-语言集成,建立新基准CV-Bench及大规模训练数据集Cambrian-7M。在多模态任务中表现出色,尤其在高分辨率图像处理上,但面临高分辨率信息处理和部分视觉任务评估的局限。[链接](https://arxiv.org/pdf/2406.16860)
129 1
|
2月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
90 2

热门文章

最新文章

下一篇
DataWorks