【Python标准库】pillow中Image模块学习

简介: 【Python标准库】pillow中Image模块学习

模块介绍

Image模块提供了一个与PIL图像同名的类。该模块还提供了许多工厂函数,包括从文件中加载图像和创建新图像的函数。

相关概念

模式

图像的模式是一个字符串,它定义了图像中像素的类型和深度。每个像素使用位深度的全范围。所以1位像素的范围是0-1,8位像素的范围是0-255,以此类推。当前版本支持以下标准模式:

1         (1-bit pixels, black and white, stored with one pixel per byte)
L         (8-bit pixels, black and white)
P         (8-bit pixels, mapped to any other mode using a color palette)
RGB     (3x8-bit pixels, true color)
RGBA     (4x8-bit pixels, true color with transparency mask)
CMYK     (4x8-bit pixels, color separation)
YCbCr     (3x8-bit pixels, color video format)
         - Note that this refers to the JPEG, and not the ITU-R BT.2020, standard
LAB     (3x8-bit pixels, the L*a*b color space)
HSV        (3x8-bit pixels, Hue, Saturation, Value color space)
I         (32-bit signed integer pixels)
F         (32-bit floating point pixels)

波段

一幅图像可以由一个或多个波段的数据组成。PIL允许您在单个图像中存储多个波段,前提是它们都具有相同的尺寸和深度。例如,PNG图像可能有“R”、“G”、“B”和“a”波段,用于表示红、绿、蓝和alpha透明度值。许多操作分别作用于每个波段,例如,直方图。将每个像素看作每个波段有一个值通常是有用的。

坐标系

PIL使用笛卡尔像素坐标系,(0,0)位于左上角。注意,坐标指的是隐含的像素角;被称为(0,0)的像素的中心实际上位于(0.5,0.5)。
坐标通常以2元组(x, y)的形式传递给库。矩形以4元组表示,左上角先给出。例如,覆盖整个800x600像素图像的矩形被写成(0,0,800,600)。

相关方法

Image.new()

PIL.Image.new(mode, size, color=0)
作用:使用给定的模式和大小创建一个新图像。

参数:
- mode:要用于新图像的模式。(参考【相关概念】章节‘模式’概念)
- size:一个2元组,包含(宽度、高度)像素。
- color:使用什么颜色的图像。默认是黑色的。如果给定,这应该是一个单波段模式的整数或浮点值,以及一个多波段模式的元组(每个波段一个值)。当创建RGB图像时,你也可以使用ImageColor模块支持的颜色字符串。如果颜色为None,表示图像未初始化。(参考【相关概念】章节‘波段’概念)
返回值:
一个Image对象

Image.resize()

Image.resize(size, resample=None, box=None, reducing_gap=None)
作用:返回此图像大小调整后的副本。

参数:
- size:请求的像素大小,作为一个2元组:(宽度,高度)- resample:一个可选的重采样滤波器。 这可以是其中之一:PIL.Image.Resampling.NEAREST, PIL.Image.Resampling.BOX, PIL.Image.Resampling.BILINEAR, PIL.Image.Resampling.HAMMING, PIL.Image.Resampling.BICUBIC,PIL.Image.Resampling.LANCZOS.
如果图像有模式“1”或“P”,它总是被设置为PIL.Image.Resampling.NEAREST
如果图像模式指定了一些位,比如“I;16”,那么默认的过滤器是PIL.Image.Resampling.NEAREST
否则,默认过滤器为PIL.Image.Resampling.BICUBIC
- box:一个可选的4元浮点组,提供要缩放的源图像区域。这些值必须在(0,0,宽,高)矩形内。如果省略或为None,则使用整个源文件。
- reducing_gap:通过两个步骤调整图像的大小来应用优化。首先,使用reduce()将图像减少整数倍。第二,使用常规重采样调整大小。最后一步通过reducing_gap时间来改变大小。reducing_gap可以是None(不执行第一步)或者应该大于1.0。reducing_gap越大,结果越接近公平重采样。reducing_gap越小,调整大小就越快。当reducing_gap大于或等于3.0时,结果在大多数情况下与公平重采样没有区别。默认值为None(无优化)。
返回值:
一个Image对象

Image.putpixel()

Image.putpixel(xy, value)
作用:修改给定位置的像素。对于单波段图像,颜色是一个数值,对于多波段图像,颜色是一个元组。除此之外,RGB和RGBA元组也被接受用于P图像。
注意,这种方法相对较慢。对于更广泛的更改,使用paste()或ImageDraw模块代替。

参数:
- xy:像素坐标,给定为(x, y)。(参考【相关概念】章节‘坐标系’概念)
- value:像素值。

Image.tell()

Image.tell()
作用:返回当前帧号。
如果定义了,n_frames表示可用帧的数量。

返回值:帧号,从0开始。

Image.seek()

Image.seek(frame)
查找序列文件中的给定帧。如果您在序列的末尾以外寻找,该方法将引发EOFError异常。当序列文件被打开时,库会自动寻找第0帧。
如果定义了,n_frames表示可用帧的数量。

参数:
frame -帧号,从0开始。
raise
EOFError -如果调用试图在序列的末尾以外进行查找。

相关属性

.filename

Image.filename: str
源文件的文件名或路径。只有打开工厂函数创建的图像才有文件名属性。如果输入是一个类似于文件的对象,则filename属性被设置为空字符串。

.format

Image.format: Optional[str]
源文件的格式。对于库本身创建的图像(通过工厂函数,或在现有图像上运行方法),此属性设置为None。

.mode

Image.mode: str
图像模式。这是一个字符串,指定图像使用的像素格式。典型的值是“1”、“L”、“RGB”或“CMYK”。完整列表请参见模式。

.size

Image.size: tuple[int]
图像大小,以像素为单位。大小是一个二元组(宽度,高度)。

.width

Image.width: int
图像宽度,以像素为单位。

.height

Image.height: int
图像高度,以像素为单位。

.palette

Image.palette: Optional[PIL.ImagePalette.ImagePalette]
调色板表,如果有的话。如果mode是“P”或“PA”,这应该是ImagePalette类的一个实例。否则,它应该设置为None。

.info

Image.info: dict
保存与图像相关联的数据的字典。这个字典被文件处理程序用来传递从文件中读取的各种非图像信息。有关详细信息,请参阅各种文件处理程序的文档。
大多数方法在返回新图像时忽略字典;因为键不是标准化的,所以方法不可能知道操作是否影响字典。如果以后需要这些信息,请保持对open方法返回的info字典的引用。
除非在其他地方注明,否则此字典不会影响保存文件。

.is_animated

Image.is_animated: bool
如果该图像有多个帧,则为True,否则为False。
此属性仅由支持动画图像的图像插件定义。如果插件不支持加载动画图像,那么这个属性可能是未定义的,即使给定的格式支持动画图像。
假设这个属性不存在于所有的图像,使用getattr(image, "is_animated", False)来检查Pillow是否能够感知图像中的多帧,而不管它的格式。

.n_frames

Image.n_frames: int
图像中的帧数。
此属性仅由支持动画图像的图像插件定义。如果插件不支持加载动画图像,那么这个属性可能是未定义的,即使给定的格式支持动画图像。
假设这个属性并不存在于所有的图像中,使用getattr(image, "n_frames",1)来检查Pillow在图像中能够感知的帧数,而不管图像的格式。

相关文章
|
4天前
|
Python
Python Internet 模块
Python Internet 模块。
100 74
|
8天前
|
XML JSON 数据库
Python的标准库
Python的标准库
120 77
|
3天前
|
Python 容器
Python学习的自我理解和想法(9)
这是我在B站跟随千锋教育学习Python的第9天,主要学习了赋值、浅拷贝和深拷贝的概念及其底层逻辑。由于开学时间紧张,内容较为简略,但希望能帮助理解这些重要概念。赋值是创建引用,浅拷贝创建新容器但元素仍引用原对象,深拷贝则创建完全独立的新对象。希望对大家有所帮助,欢迎讨论。
|
5天前
|
存储 索引 Python
Python学习的自我理解和想法(6)
这是我在B站千锋教育学习Python的第6天笔记,主要学习了字典的使用方法,包括字典的基本概念、访问、修改、添加、删除元素,以及获取字典信息、遍历字典和合并字典等内容。开学后时间有限,内容较为简略,敬请谅解。
|
9天前
|
存储 程序员 Python
Python学习的自我理解和想法(2)
今日学习Python第二天,重点掌握字符串操作。内容涵盖字符串介绍、切片、长度统计、子串计数、大小写转换及查找位置等。通过B站黑马程序员课程跟随老师实践,非原创代码,旨在巩固基础知识与技能。
|
9天前
|
程序员 Python
Python学习的自我理解和想法(3)
这是学习Python第三天的内容总结,主要围绕字符串操作展开,包括字符串的提取、分割、合并、替换、判断、编码及格式化输出等,通过B站黑马程序员课程跟随老师实践,非原创代码。
|
9天前
|
XML JSON 数据库
Python的标准库
Python的标准库
36 11
|
5天前
|
Python
Python学习的自我理解和想法(7)
学的是b站的课程(千锋教育),跟老师写程序,不是自创的代码! 今天是学Python的第七天,学的内容是集合。开学了,时间不多,写得不多,见谅。
|
4天前
|
存储 安全 索引
Python学习的自我理解和想法(8)
这是我在B站千锋教育学习Python的第8天,主要内容是元组。元组是一种不可变的序列数据类型,用于存储一组有序的元素。本文介绍了元组的基本操作,包括创建、访问、合并、切片、遍历等,并总结了元组的主要特点,如不可变性、有序性和可作为字典的键。由于开学时间紧张,内容较为简略,望见谅。
|
6天前
|
存储 索引 Python
Python学习的自我理解和想法(4)
今天是学习Python的第四天,主要学习了列表。列表是一种可变序列类型,可以存储任意类型的元素,支持索引和切片操作,并且有丰富的内置方法。主要内容包括列表的入门、关键要点、遍历、合并、判断元素是否存在、切片、添加和删除元素等。通过这些知识点,可以更好地理解和应用列表这一强大的数据结构。