数据结构之堆——算法与数据结构入门笔记(六)

简介: 数据结构之堆——算法与数据结构入门笔记(六)

f8b2b59133134bdbb21101207cb05bd5.png

本文是算法与数据结构的学习笔记第六篇,将持续更新,欢迎小伙伴们阅读学习。有不懂的或错误的地方,欢迎交流


引言


当涉及到高效的数据存储和检索时,堆(Heap)是一种常用的数据结构。上一篇文章中介绍了树和完全二叉树,堆就是一个完全二叉树,可以分为最大堆和最小堆两种类型。在这篇博客中,我们将深入探讨堆的概念、特点、常见应用、操作以及实现。


什么是堆?


在计算机科学中,堆是一种具有特殊属性的树形数据结构。堆通常被用来实现优先队列(Priority Queue),它允许快速地找到具有最高(或最低)优先级的元素。


堆的特点


堆的主要特点如下:


1.堆是一种完全二叉树结构,即除了最后一层外,其他层的节点都是满的,并且最后一层的节2.点从左到右依次填满,不能有间隔。在最大堆中,每个节点的值都大于或等于其子节点的值。根节点的值是最大的。在最小堆中,每个节点的值都小于或等于其子节点的值。根节点的值是最小的。

3.堆通常被表示为一个数组,可以通过索引直接访问堆中的元素,堆的根节点通常是数组中的第一个元素。

4.堆的插入和删除操作的时间复杂度都为 O ( log ⁡ n ) O(\log n)O(logn),其中 n nn 是堆中元素的数量。


堆的应用


堆在计算机科学中有广泛的应用,其中一些主要应用包括:


1.堆排序

堆排序是一种高效的排序算法,它利用堆的性质进行排序。它的时间复杂度为 O ( n log ⁡ n ) O(n\log n)O(nlogn),并且具有原地排序的特性。

2.队列

堆可以实现高效的优先级队列,允许以常数时间复杂度找到具有最高优先级的元素,并支持快速的插入和删除操作。

3.Top K 问题

在一组元素中,查找前 K 个最大(或最小)的元素是一个常见的问题。使用堆可以高效地解决这个问题,通过维护一个大小为 K 的最小堆或最大堆,可以快速地找到前 K 个元素。

4.图算法

在图算法中,堆常用于实现最短路径算法(如Dijkstra算法)和最小生成树算法(如Prim和Kruskal算法)。

5.数据流中的中位数

对于一个不断变化的数据流,查找其中的中位数也是一个常见的问题。使用两个堆(一个最大堆和一个最小堆),可以高效地实现对数据流中的中位数的查找。



为什么使用数组实现堆


用数组来实现树相关的数据结构也许看起来有点古怪,但是它在时间和空间上都是很高效的。

我们准备将上面图中的大根堆这样存储:

50, 45, 40, 20, 25, 35, 30, 10, 15 ]

就这么多!我们除了一个简单的数组以外,不需要任何额外的空间。

如果我们不允许使用指针,那么我们怎么知道哪一个节点是父节点,哪一个节点是它的子节点呢?问得好!节点在数组中的位置 index 和它的父节点以及子节点的索引之间有一个映射关系。

如果 i 是节点的索引,那么下面的公式就给出了它的父节点和子节点在数组中的位置:

parent(i) = floor((i - 1)/2)
left(i)   = 2i + 1
right(i)  = 2i + 2

注意:right(i) 就是简单的 left(i) + 1。左右节点总是处于相邻的位置。

我们将这些公式放到前面的例子中验证一下。

1690469231303.png


注意:根节点(50)没有父节点,因为 -1 不是一个有效的数组索引。同样,节点(25),(35),(30),(10)和(15)没有子节点,因为这些索引已经超过了数组的大小,所以我们在使用这些索引值的时候需要保证是有效的索引值。

复习一下,在最大堆中,父节点的值总是要大于(或者等于)其子节点的值。这意味下面的公式对数组中任意一个索引 i 都成立:

array[parent(i)] >= array[i]


可以用上面的例子来验证一下这个堆属性。

如你所见,这些公式允许我们不使用指针就可以找到任何一个节点的父节点或者子节点。


堆的基本操作


以下是堆的一些基本操作:

1.插入:将一个元素插入到堆中,并保持堆的特性。

2.删除根节点:删除堆的根节点,并保持堆的特性。

3.获取根节点:获取堆的根节点的值,通常是堆中最大或最小的值。

4.堆化(Heapify):对一个无序的数组进行堆化操作,将其转换为一个堆。


C语言


以下是使用C语言实现堆(包括创建堆、插入数据、删除根结点、获取根节点和堆化等基础操作)的示例代码:

#include <stdio.h>
#define MAX_HEAP_SIZE 100
typedef struct {
    int heap[MAX_HEAP_SIZE];
    int size;
} Heap;
void initializeHeap(Heap *h) {
    h->size = 0;
}
void insert(Heap *h, int value) {
    if (h->size >= MAX_HEAP_SIZE) {
        printf("Heap is full.\n");
        return;
    }
    int i = h->size;
    h->heap[i] = value;
    h->size++;
    // 调整堆的结构
    while (i > 0 && h->heap[(i - 1) / 2] < h->heap[i]) {
        int temp = h->heap[i];
        h->heap[i] = h->heap[(i - 1) / 2];
        h->heap[(i - 1) / 2] = temp;
        i = (i - 1) / 2;
    }
}
int removeRoot(Heap *h) {
    if (h->size <= 0) {
        printf("Heap is empty.\n");
        return -1;
    }
    int root = h->heap[0];
    h->size--;
    h->heap[0] = h->heap[h->size];
    // 调整堆的结构
    int i = 0;
    while (2 * i + 1 < h->size) {
        int leftChild = 2 * i + 1;
        int rightChild = 2 * i + 2;
        int largerChild = leftChild;
        if (rightChild < h->size && h->heap[rightChild] > h->heap[leftChild]) {
            largerChild = rightChild;
        }
        if (h->heap[i] >= h->heap[largerChild]) {
            break;
        }
        int temp = h->heap[i];
        h->heap[i] = h->heap[largerChild];
        h->heap[largerChild] = temp;
        i = largerChild;
    }
    return root;
}
void heapify(Heap *h, int arr[], int n) {
    initializeHeap(h);
    // 将数组元素逐个插入堆中
    for (int i = 0; i < n; i++) {
        insert(h, arr[i]);
    }
}
int getRoot(Heap *h) {
    if (h->size <= 0) {
        printf("Heap is empty.\n");
        return -1;
    }
    return h->heap[0];
}
int main() {
    Heap h;
    initializeHeap(&h);
    insert(&h, 5);
    insert(&h, 2);
    insert(&h, 10);
    insert(&h, 8);
    int root = removeRoot(&h);
    printf("Root: %d\n", root);
    int arr[] = {9, 4, 7, 1, 3};
    int arrSize = sizeof(arr) / sizeof(arr[0]);
    heapify(&h, arr, arrSize);
    printf("Root: %d\n", getRoot(&h));
    return 0;
}


结论


堆是一种重要的数据结构,它提供了高效的数据存储和检索方式。我们可以使用数组来实现堆,并实现插入、删除和堆化等操作。堆在排序、优先队列、Top K 问题、图算法以及中位数查找等方面具有广泛的应用。

希望这篇博客能够帮助你理解堆的概念、应用和实现。

目录
打赏
0
0
0
0
19
分享
相关文章
|
4月前
|
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
98 9
 算法系列之数据结构-二叉树
|
4月前
|
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
117 3
 算法系列之数据结构-Huffman树
|
4月前
|
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
107 22
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
139 29
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
40 10
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
20天前
|
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等