flink oracle cdc实时同步(超详细)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时计算 Flink 版,5000CU*H 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 超详细讲解flink oracle cdc实时同步(含oracle安装配置等)

01 引言

官方文档:https://github.com/ververica/flink-cdc-connectors/blob/release-master/docs/content/connectors/oracle-cdc.md

本文参照官方文档来记录Oracle的配置,并写出简单的oracle。

在本文开始前,需要先安装Oracle,有兴趣的同学可以参考博主之前写的《docker下安装oracle11g(一次安装成功)》

02 前提条件

如果要做oracle的实时同步,Oracle数据库配置必须满足如下:

  1. Oracle数据库启用日志归档
  2. 定义具有适当权限的Oracle用户
  3. 被捕获的表或数据库上必须启用增量日志记录

在官网的安装教程中,可以看到有两种数据库类型的配置,分别是:

类型 描述 版本
独立的数据库架构(Non-CDB database) 是传统的独立数据库架构,每个数据库实例包含所有的对象和数据 Oracle 11g以及之前的版本中使用
多租户数据库架构(CDB database) 多租户架构的数据库,包含一个根容器和多个子容器(PDB),每个PDB可以看作是一个独立的数据库 Oracle 12c开始

因为 之前安装 的是Oracle11g,所以本文以独立的数据库架构(Non-CDB database)的配置来讲解。

03 配置

注意以下执行的条件是基于之前安装好的oracle环境来执行的,详情参阅:《docker下安装oracle11g(一次安装成功)》

3.1 启用日志归档

Step1:进入容器:

docker exec -it oracle_11g bash

Step2:以DBA的权限登录数据库:

sqlplus /nolog
CONNECT sys/system AS SYSDBA

Step3:启用日志归档:

-- 设置数据库恢复文件目标大小为10G
alter system set db_recovery_file_dest_size = 10G;

-- 设置数据库恢复文件目标路径
alter system set db_recovery_file_dest = '/home/oracle/app/oracle/product/11.2.0' scope=spfile;

-- 立即关闭数据库
shutdown immediate;

-- 以mount模式启动数据库
startup mount;

-- 启用数据库归档日志模式
alter database archivelog;

-- 打开数据库,允许用户访问
alter database open;

操作记录如下:
image.png

Step4:查看日志归档是否启用(如果显示“Archive Mode”表示已经启用)

archive log list;

image.png

/home/oracle/app/oracle/product/11.2.0目录也能看到数据库恢复文件(按日期分目录):

image.png


备注:

  • 启用日志归档需要重启数据库。
  • 归档日志将占用大量的磁盘空间,因此需要定期清理过期的日志。

3.2 用户赋权

Step1创建表空间(创建表空间是为了提供一个独立、可控、可扩展的存储区域,以供CDC工具捕获和管理数据库的增量数据,这对于实时同步和数据变更追踪非常重要,并为数据流和数据仓库等应用提供可靠的数据源。)

-- 以DBA的权限登录数据库
sqlplus /nolog
CONNECT sys/system AS SYSDBA
-- 创建一个名为"logminer_tbs"的表空间
-- 指定表空间的数据文件路径为"/home/oracle/app/oracle/product/11.2.0/logminer_tbs.dbf",其中"/home/oracle/app/oracle/product/11.2.0"是数据文件存储的目录,"logminer_tbs.dbf"是数据文件的文件名
-- 设置表空间的初始大小为25MB
-- 如果数据文件已经存在且可重用,将其重用,否则创建一个新的数据文件
-- 启用表空间的自动扩展功能,即当表空间空间不足时,自动增加数据文件的大小
-- 设置表空间的最大允许大小为无限,即表空间可以无限制地自动扩展
CREATE TABLESPACE logminer_tbs DATAFILE '/home/oracle/app/oracle/product/11.2.0/logminer_tbs.dbf' SIZE 25M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

image.png

可以看到在“/home/oracle/app/oracle/product/11.2.0”目录里已经创建了logminer_tbs.dbf文件:
image.png

Step2:创建用户并赋予权限

-- 创建一个名为"flinkuser"的用户,密码为"flinkpw",将其默认表空间设置为"LOGMINER_TBS",并在该表空间上设置无限配额。
CREATE USER flinkuser IDENTIFIED BY flinkpw DEFAULT TABLESPACE LOGMINER_TBS QUOTA UNLIMITED ON LOGMINER_TBS;

-- 允许"flinkuser"用户创建会话,即允许该用户连接到数据库。
GRANT CREATE SESSION TO flinkuser;

-- (不支持Oracle 11g)允许"flinkuser"用户在多租户数据库(CDB)中设置容器。
-- GRANT SET CONTAINER TO flinkuser;

-- 允许"flinkuser"用户查询V_$DATABASE视图,该视图包含有关数据库实例的信息。
GRANT SELECT ON V_$DATABASE TO flinkuser;

-- 允许"flinkuser"用户执行任何表的闪回操作。
GRANT FLASHBACK ANY TABLE TO flinkuser;

-- 允许"flinkuser"用户查询任何表的数据。
GRANT SELECT ANY TABLE TO flinkuser;

-- 允许"flinkuser"用户拥有SELECT_CATALOG_ROLE角色,该角色允许查询数据字典和元数据。
GRANT SELECT_CATALOG_ROLE TO flinkuser;

-- 允许"flinkuser"用户拥有EXECUTE_CATALOG_ROLE角色,该角色允许执行一些数据字典中的过程和函数。
GRANT EXECUTE_CATALOG_ROLE TO flinkuser;

-- 允许"flinkuser"用户查询任何事务。
GRANT SELECT ANY TRANSACTION TO flinkuser;

-- (不支持Oracle 11g)允许"flinkuser"用户进行数据变更追踪(LogMiner)。
-- GRANT LOGMINING TO flinkuser;

-- 允许"flinkuser"用户创建表。
GRANT CREATE TABLE TO flinkuser;

-- 允许"flinkuser"用户锁定任何表。
GRANT LOCK ANY TABLE TO flinkuser;

-- 允许"flinkuser"用户修改任何表。
GRANT ALTER ANY TABLE TO flinkuser;

-- 允许"flinkuser"用户创建序列。
GRANT CREATE SEQUENCE TO flinkuser;

-- 允许"flinkuser"用户执行DBMS_LOGMNR包中的过程。
GRANT EXECUTE ON DBMS_LOGMNR TO flinkuser;

-- 允许"flinkuser"用户执行DBMS_LOGMNR_D包中的过程。
GRANT EXECUTE ON DBMS_LOGMNR_D TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOG视图,该视图包含有关数据库日志文件的信息。
GRANT SELECT ON V_$LOG TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOG_HISTORY视图,该视图包含有关数据库历史日志文件的信息。
GRANT SELECT ON V_$LOG_HISTORY TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOGMNR_LOGS视图,该视图包含有关LogMiner日志文件的信息。
GRANT SELECT ON V_$LOGMNR_LOGS TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOGMNR_CONTENTS视图,该视图包含LogMiner日志文件的内容。
GRANT SELECT ON V_$LOGMNR_CONTENTS TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOGMNR_PARAMETERS视图,该视图包含有关LogMiner的参数信息。
GRANT SELECT ON V_$LOGMNR_PARAMETERS TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOGFILE视图,该视图包含有关数据库日志文件的信息。
GRANT SELECT ON V_$LOGFILE TO flinkuser;

-- 允许"flinkuser"用户查询V_$ARCHIVED_LOG视图,该视图包含已归档的数据库日志文件的信息。
GRANT SELECT ON V_$ARCHIVED_LOG TO flinkuser;

-- 允许"flinkuser"用户查询V_$ARCHIVE_DEST_STATUS视图,该视图包含有关归档目标状态的信息。
GRANT SELECT ON V_$ARCHIVE_DEST_STATUS TO flinkuser;

3.3 表或数据库上启用增量日志记录(supplemental log)

在讲解Oracle之前,很有必要先了解Oracle的逻辑结构。

3.3.1 Oracle 逻辑结构

Oracle数据库的物理结构与MySQL以及SQLServer有着很大的不同,在使用MySQL或SQLServer时,我们不需要去关心它们的逻辑结构和物理结构。

Oracle在逻辑结构中,分别是如下的结构:数据库实例 => 表空间 => 数据段(表) => 区 => 块

  • 数据库实例:前面的《docker下安装oracle11g(一次安装成功)》,在启动容器时,已经指定了Oracle的数据库实例的唯一ID,每个Oracle数据库实例都有一个唯一的SID,也就是说,安装的时候,已经创建好了一个“helowin”数据库实例了。image.png
  • 表空间:在 “用户赋权”的第1步骤,可以看出已经创建了“logminer_tbs”表空间(CREATE TABLESPACE logminer_tbs......)

相关的查询SQL:

-- 以DBA的权限登录数据库
sqlplus /nolog
CONNECT sys/system AS SYSDBA

-- 查询数据库实例名称
SELECT NAME FROM V$DATABASE;

-- 查询所有表空间名称
SELECT TABLESPACE_NAME FROM DBA_TABLESPACES;

结果如下:
image.png

ok,接下来就可以进入“LOGMINER_TBS”表空间去创建表了。

3.3.2 创建表

LOGMINER_TBS表空间下的flinkuser用户下创建customers表:

-- 切换至flinkuser用户
sqlplus /nolog
CONNECT flinkuser/flinkpw

-- 创建customers表
CREATE TABLE customers (
    customer_id NUMBER PRIMARY KEY,
    customer_name VARCHAR2(50),
    email VARCHAR2(100),
    phone VARCHAR2(20)
) TABLESPACE LOGMINER_TBS;

查看表是否创建成功:

-- 查看LOGMINER_TBS表空间下的所有表
select tablespace_name, table_name from user_tables
where tablespace_name = 'LOGMINER_TBS';

可以看到表创建成功:
image.png

3.3.3 启用增量日志

切换至SYS用户,以DBA的权限登录数据库,为表和数据库启用增量日志:

-- 以DBA的权限登录数据库
sqlplus /nolog
CONNECT sys/system AS SYSDBA

-- 为LOGMINER_TBS表空间下的customers表启用增强日志记录
ALTER TABLE FLINKUSER.CUSTOMERS ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS

-- 为数据库启用增强日志记录:
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

操作成功:
image.png

04 flink sql

注意:源表的字段定义、schema-name以及table-name都要大写,否则无法同步

-- 创建Oracle CDC源表table_source_oracle,从Oracle数据库中读取数据
CREATE TABLE table_source_oracle (
        CUSTOMER_ID INT,
        CUSTOMER_NAME STRING,
        EMAIL STRING,
        PHONE STRING,
        PRIMARY KEY (CUSTOMER_ID) NOT ENFORCED
        )
WITH (
        'connector' = 'oracle-cdc',
        'hostname' = '10.194.183.120',
        'port' = '30026',
        'username' = 'flinkuser',
        'password' = 'flinkpw',
        'database-name' = 'helowin',
        'schema-name' = 'FLINKUSER',
        'table-name' = 'CUSTOMERS'
)

-- 创建MySQL JDBC接收表table_sink_mysql,将数据写入到MySQL数据库
CREATE TABLE table_sink_mysql (
    customer_id INT,
    customer_name STRING,
    email STRING,
    phone STRING,
    PRIMARY KEY (customer_id) NOT ENFORCED
)
WITH (
    'connector' = 'jdbc',
    'url' = 'jdbc:mysql://10.194.183.120:30025/test',
    'username' = 'root',
    'password' = 'root',
    'table-name' = 'customers'
);

-- 将table_source_oracle表的数据插入到table_sink_mysql表中
INSERT INTO table_sink_mysql SELECT * FROM table_source_oracle;

执行flinksql后,可以看到控制台没有报错,程序已经正常启动:
image.png

往customers插入一条数据:

-- 切换至flinkuser用户
sqlplus /nolog
CONNECT flinkuser/flinkpw

-- 插入数据
INSERT INTO customers (customer_id, customer_name, email, phone)
VALUES (1, 'Dumas', 'Dumas@example.com', '123-456-7890');

image.png

可以看到,已经写入成功了:

image.png

05 其它问题

问题解决参考:https://flink-learning.org.cn/article/detail/bf01dd4ff3ed8a11d6d38f365bc2a15d

虽然能做同步了,但是感觉还是有很多坑的,比如控制台会报错:
image.png

解决方式:在 create 语句中加上

'debezium.database.tablename.case.insensitive'='false'

还有数据延迟较大,也是在create语句加上:

'debezium.log.mining.strategy'='online_catalog',
'debezium.log.mining.continuous.mine'='true'

所以,最终的Flink SQL如下:

-- 创建Oracle CDC源表table_source_oracle,从Oracle数据库中读取数据
CREATE TABLE table_source_oracle (
        CUSTOMER_ID INT,
        CUSTOMER_NAME STRING,
        EMAIL STRING,
        PHONE STRING,
        PRIMARY KEY (CUSTOMER_ID) NOT ENFORCED
        )
WITH (
        'connector' = 'oracle-cdc',
        'hostname' = '10.194.183.120',
        'port' = '30026',
        'username' = 'flinkuser',
        'password' = 'flinkpw',
        'database-name' = 'HELOWIN',
        'schema-name' = 'FLINKUSER',
        'table-name' = 'CUSTOMERS',
        'debezium.database.tablename.case.insensitive'='false',
        'debezium.log.mining.strategy'='online_catalog',
        'debezium.log.mining.continuous.mine'='true'
);

-- 创建MySQL JDBC接收表table_sink_mysql,将数据写入到MySQL数据库
CREATE TABLE table_sink_mysql (
    customer_id INT,
    customer_name STRING,
    email STRING,
    phone STRING,
    PRIMARY KEY (customer_id) NOT ENFORCED
)
WITH (
    'connector' = 'jdbc',
    'url' = 'jdbc:mysql://10.194.183.120:30025/test',
    'username' = 'root',
    'password' = 'root',
    'table-name' = 'customers'
);

-- 将table_source_oracle表的数据插入到table_sink_mysql表中
INSERT INTO table_sink_mysql SELECT * FROM table_source_oracle;

06 文末

本文主要讲解了Flink Oracle CDC实时同步的所有步骤,希望能帮助到大家,谢谢大家的阅读,本文完!

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
4月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
217 1
Amoro + Flink CDC 数据融合入湖新体验
|
4月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
731 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
5月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
641 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
3月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
6月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
2月前
|
存储 Oracle 关系型数据库
服务器数据恢复—光纤存储上oracle数据库数据恢复案例
一台光纤服务器存储上有16块FC硬盘,上层部署了Oracle数据库。服务器存储前面板2个硬盘指示灯显示异常,存储映射到linux操作系统上的卷挂载不上,业务中断。 通过storage manager查看存储状态,发现逻辑卷状态失败。再查看物理磁盘状态,发现其中一块盘报告“警告”,硬盘指示灯显示异常的2块盘报告“失败”。 将当前存储的完整日志状态备份下来,解析备份出来的存储日志并获得了关于逻辑卷结构的部分信息。
|
2月前
|
存储 Oracle 关系型数据库
【赵渝强老师】Oracle RMAN的目录数据库
Oracle RMAN默认将备份元信息存储在控制文件中,但控制文件损坏或丢失会导致恢复失败,且备份增多会使控制文件无限增长。为解决这些问题,Oracle引入了RMAN目录数据库(Catalog Database),专门用于存储RMAN备份的元信息。使用目录数据库可提升备份管理效率,支持多数据库共享、长期备份历史记录存储,并可保存RMAN脚本。本文详细介绍了如何创建目录数据库、注册目标数据库及其操作步骤。
|
3月前
|
存储 Oracle 关系型数据库
oracle数据恢复—oracle数据库执行错误truncate命令的数据恢复案例
oracle数据库误执行truncate命令导致数据丢失是一种常见情况。通常情况下,oracle数据库误操作删除数据只需要通过备份恢复数据即可。也会碰到一些特殊情况,例如数据库备份无法使用或者还原报错等。下面和大家分享一例oracle数据库误执行truncate命令导致数据丢失的数据库数据恢复过程。
|
5月前
|
Oracle 安全 关系型数据库
【Oracle】使用Navicat Premium连接Oracle数据库两种方法
以上就是两种使用Navicat Premium连接Oracle数据库的方法介绍,希望对你有所帮助!
995 28

推荐镜像

更多