在开始学习之前我们先来欣赏一下五岳之一华山的风景,来营造一个好心情,只有一个好心情我们才能更好的学习
结构体
1 结构体的声明
1.1 结构的基础知识
结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
1.2 结构的声明
struct tag { member-list; }variable-list;
例如描述一个学生:
struct Stu { char name[20];//名字 int age;//年龄 char sex[5];//性别 char id[20];//学号 }; //分号不能丢
1.3 特殊的声明
在声明结构的时候,可以不完全的声明。比如:
//匿名结构体类型 struct { int a; char b; float c; }x; struct { int a; char b; float c; }a[20], *p;
上面的两个结构在声明的时候省略掉了结构体标签(tag)。那么问题来了?
//在上面代码的基础上,下面的代码合法吗?
p = &x;
警告: 编译器会把上面的两个声明当成完全不同的两个类型。 所以是非法的。
1.4 结构的自引用
在结构中包含一个类型为该结构本身的成员是否可以呢?
//代码1 struct Node { int data; struct Node next; }; //可行否? 如果可以,那sizeof(struct Node)是多少?
答案是不可行的,因为在结构体变量中自引用会出现无限套娃的情景。在求struct Node大小时中包含自身,但是自身的大小又是不知道的,所以这总写法是错误的!
正确写法为:
//代码2 struct Node { int data; struct Node* next; };
下面还有一个问题:
在使用typedef重命名时,再自引用指针可以吗?代码如下:
typedef struct { int data; Node* next; }Node; //这样写代码,可行否?
答案是不行的,因为代码的执行顺序都是从上往下的,typedef重命名在最后才赋予新名字,在结构体中就此运用就是不对的!具体解决方法如下:
typedef struct Node { int data; struct Node* next; }Node;
1.5 结构体变量的定义和初始化
有了结构体类型,那如何定义变量,其实很简单。
struct Point { int x; int y; }p1; //声明类型的同时定义变量p1(第一种) struct Point p2; //定义结构体变量p2(第二种) //初始化:定义变量的同时赋初值。 struct Point p3 = {x, y};(第三种) struct Stu //类型声明 { char name[15];//名字 int age; //年龄 }; struct Stu s = {"zhangsan", 20};//初始化 struct Node { int data; struct Point p; struct Node* next; }n1 = {10, {4,5}, NULL}; //结构体嵌套初始化(第四种) struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化(第五种)
以上五种方法全部都已代码的形式为大家展示清楚了。
1.6 结构体内存对齐(重点)
我们已经掌握了结构体的基本使用了。 现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点: 结构体内存对齐!!!
我们先从一个程序说起:
struct S1 { char c1; int i; char c2; }; int main(void) { printf("%d\n", sizeof(struct S1)); return 0; }
struct S1的大小应该为多少呢?我们刚开始一般会觉得是6
那为什么结果是12呢?我们先通过一个宏offsetof(计算结构体成员相较于结构体起始位置的偏移量)。这个宏在头文件#include<stddef.h>中。
#include<stddef.h> struct S1 { char c1; int i; char c2; }; int main(void) { //printf("%d\n", sizeof(struct S1)); printf("%d\n", offsetof(struct S1, c1)); printf("%d\n", offsetof(struct S1, i)); printf("%d\n", offsetof(struct S1, c2)); return 0; }
那结构体内容都存满了,为什么还要继续浪费这三个字节呢??
我们来学习一下:
如何计算?
首先得掌握结构体的对齐规则:
1. 第一个成员在与结构体变量偏移量为0的地址处。
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。 对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。 VS中默认的值为8 Linux中没有默认对齐数,对齐数就是成员自身的大小
3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整 体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
学习了以上的内存对齐规则,我们应该明白了上面出现了所以疑问,那现在我们在练习一道题:
#include<stddef.h> struct S1 { char c1; char c2; int i; }; int main(void) { printf("%d\n", sizeof(struct S1)); return 0; }
我们对以上结构体进行具体化分析:
那结果是不是8呢,我们来验证一下:
没错,我相信大家已经基本了解和掌握了结构体内存对齐的。那我们为什么要内存对齐呢?
原因:
1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访 问。
总体来说: 结构体的内存对齐是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在一起。
//例如: struct S1 { char c1; int i; char c2; }; struct S2 { char c1; char c2; int i; };
S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。
1.7 修改默认对齐数
之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数
#include <stdio.h> #pragma pack(8)//设置默认对齐数为8 struct S1 { char c1; int i; char c2; }; #pragma pack()//取消设置的默认对齐数,还原为默认 #pragma pack(1)//设置默认对齐数为1 struct S2 { char c1; int i; char c2; }; #pragma pack()//取消设置的默认对齐数,还原为默认 int main() { //输出的结果是什么? printf("%d\n", sizeof(struct S1)); printf("%d\n", sizeof(struct S2)); return 0; }
当我们设置对齐数为1时,相同的结构体的内存大小从12变成6。
1.8 结构体传参
struct S { int data[1000]; int num; }; struct S s = {{1,2,3,4}, 1000}; //结构体传参 void print1(struct S s) { printf("%d\n", s.num); } //结构体地址传参 void print2(struct S* ps) { printf("%d\n", ps->num); } int main() { print1(s); //传结构体 print2(&s); //传地址 return 0; }
上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。 原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的 下降。
2. 位段
2.1 什么是位段
位段的声明和结构是类似的,有两个不同:
1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。
struct A { int _a:2; int _b:5; int _c:10; int _d:30; };
A就是一个位段类型。 那位段A的大小是多少?
struct A { int _a : 2; int _b : 5; int _c : 10; int _d : 30; }; int main() { printf("%d\n", sizeof(struct A)); return 0; }
带着刚才的疑问,我们接着往下看。
2.2 位段的内存分配
1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
举个例子:
//一个例子 struct S { char a:3; char b:4; char c:5; char d:4; }; struct S s = {0}; s.a = 10; s.b = 12; s.c = 3; s.d = 4; //空间是如何开辟的?
接下来让我们分析一下:
我们可以一目了然的看出位段在vs中的内存分配。
2.3 位段的跨平台问题
1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机 器会出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是 舍弃剩余的位还是利用,这是不确定的。
总结: 跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。
3. 枚举
枚举顾名思义就是一一列举。 把可能的取值一一列举。 比如我们现实生活中:性别有:男、女、保密,也可以一一列举。 月份有12个月,也可以一一列举。
3.1 枚举类型的定义
enum Day//星期 { Mon, Tues, Wed, Thur, Fri, Sat, Sun }; enum Sex//性别 { MALE, FEMALE, SECRET }; enum Color//颜色 { RED, GREEN, BLUE };
以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。 {}中的内容是枚举类型的可能取值,也叫 枚举常量 。
这些可能取值都是有值的,默认从0开始,依次递增1,当然在声明枚举类型的时候也可以赋初值。
例如:
enum Color//颜色 { RED=1, GREEN, BLUE=4 }; //RED = 1;GREEN = 2; BLUE = 4;
3.2 枚举的优点
我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点: 1. 增加代码的可读性和可维护性 2. 和#define定义的标识符比较枚举有类型检查,更加严谨。 3. 便于调试 4. 使用方便,一次可以定义多个常量
3.3 枚举的使用
enum Color//颜色 { RED=1, GREEN=2, BLUE=4 }; enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。 clr = 5; //ok??
4. 联合(共用体)
4. 联合(共用体)
联合也是一种特殊的自定义类型 这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。 比如:
union Un { char c; int i; }; int main() { union Un un = { 0 }; printf("%d\n", sizeof(un)); printf("%p\n", &un); printf("%p\n", &(un.i)); printf("%p\n", &(un.c)); return 0; }
无论访问联合体的哪一块位置,地址都是同一个,这说明联合体中的变量是共用同一块内存空间的,不会针对一个变量开辟一个,而且内存大小为4,为联合体中最大的。
所以联合体中在同一时间只能使用里面的一个元素,要不然就会进行干扰。
我们可以使用一段代码证明一下:
union Un { char c; int i; }; int main() { union Un un = { 0 }; un.i = 0x11223344; un.c = 0x55; return 0; }
4.2 联合的特点
联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联 合至少得有能力保存最大的那个成员)。
4.3 联合大小的计算
联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
我们来练习一下:
union Un1 { char c[5]; int i; }; //下面输出的结果是什么? printf("%d\n", sizeof(union Un1));
结果如何呢?
以上就是所有内容,谢谢观看!!!!