Java 的内存结构

简介: Java源码文件被编译为字节码文件,字节码文件在程序运行中被读入jvm中,jvm中的每个线程都会有一个属于自己的程序计数器(PC),程序都是由CPU逐条进行执行的,PC记录的就是当前线程执行到的代码的位置。

Java 的内存结构

1. 程序计数器

Java源码文件被编译为字节码文件,字节码文件在程序运行中被读入jvm中,jvm中的每个线程都会有一个属于自己的程序计数器(PC),程序都是由CPU逐条进行执行的,PC记录的就是当前线程执行到的代码的位置。每个线程都有属于自己的PC,因此PC是线程私有的,并不是共享的。

如果当前线程执行的是Java中的方法,那么当前线程的PC就是记录的方法所执行到的位置;而如果当前线程执行的并不是Java中的方法,而是使用Native修饰的方法,则PC则是未被定义的。

综上所述,PC是不会引起OOM的。

2. 方法区

img

img

方法区主要存放的就是如上图所示的这些东西。Java8使用metaspace来代替方法区。

这里的主要问题就是字符串的一个拼接问题,Integer的初始化问题等。

3. 栈

栈是一种有条件的线性数据结构,FOLO的数据结构。根据栈的的特性,在程序执行时,保留现场数据,过程数据很适合采用栈这种数据结构。JVM中使用到栈的地方主要有两个地方,第一个是JVM栈,另一个是本地方法栈,本地方法栈主要是在执行Native方法时用到的,所以这里不做具体的讨论。主要来讲JVM栈,里面保存的主要是Java方法的执行过程和中间变量。

3.1 虚拟机栈

img

Java程序在执行时,每一个线程分配一个方法栈,所以说,方法栈的生命周期是与线程同步的。

如上图所示,内存中分配了方法栈,每个栈是由一个个的栈帧组成的,那么,我们肯定会好奇,那么栈帧中存储的都是些什么呢?我们接着往下看:

img

如上图所示,我们在前面也提到了,一个线程对应一个JVM栈,而这个线程中的每个方法则对应一个栈帧,那么这样一一对应起来之后,就能够很容易的猜想到每个栈帧中都存储着哪些东西。

既然每个栈帧对应的是该线程中的的一个方法,那么栈帧中存储的肯定有该方法中的临时变量,对应的操作数动态链接方法出口等信息。

3.1.1 临时变量表

临时变量表就是用来存储方法中的临时变量的,其中包括在方法中出现的局部变量(基本数据类型:boolean,byte,short,char,int,float,long,double),入参和对象的引用,这里需要注意的有两点:

一:局部变量表的基本单位是 slot,32位,因此,只此64位的基本数据类型比如long,double这些数据需要占用两个slot。

二:slot中存储的对象的引用,并不是对象本身的值。

局部变量表在编译期间就已经分配好了,在运行期间不会改变它的大小

还有一点就是静态方法和非静态方法的一个区别,静态方法所有的对象公用资源,因此第一位slot存储的就是局部变量,而非静态方法,每个对象都用自己的资源,因此,第一个slot存储的是该对象的引用。

img

slot的复用

为了更好的去利用空间,在一个局部变量的生命周期结束之后,该局部变量对应的slot槽应该是空出来了,如果后面再有局部变量来声明,可以采用该slot槽,就不用重新开辟新的slot来存储后面的局部变量。

public void test(boolean flag)
{
   
   
    if(flag)
    {
   
   
        int a = 66;
    }

    int b = 55;

我们来看上面这个例子,在方法test中,初始的局部变量表应该是如下所示的:

image-20201106101341480

当局部变量a的生命周期结束后,b开始声明的时候,a的slot槽是空着的,因此,此时声明b的时候就可以使用a的slot槽了。

我们来看一个这个题目:

public class TestDemo {
   
   
    public static void main(String[] args) {
   
   

        byte[] bbbb = new byte[64 * 1024 * 1024];


        System.gc();
    }
}

我们声明一个64M的数组,在最后执行gc的时候能不能够回收呢?在 JVM运行参数中加入 -verbose:gc

会得到如下的打印信息:

[GC (System.gc())  69468K->66104K(251392K), 0.0012261 secs]
[Full GC (System.gc())  66104K->65946K(251392K), 0.0053029 secs]

Process finished with exit code 0

理论上来说不会回收,因为他的生命周期并没有严格的结束,所以并不能够回收。

下面我们来给它规定一个生命周期:

public class TestDemo {
   
   
    public static void main(String[] args) {
   
   
        {
   
   
            byte[] bbbb = new byte[64 * 1024 * 1024];
        }
        System.gc();
    }
}

那这样的话应该能够gc回收了吧,然而运行后我们发现他还是没有进行回收:

[GC (System.gc())  69468K->66104K(251392K), 0.0007805 secs]
[Full GC (System.gc())  66104K->65946K(251392K), 0.0052613 secs]

Process finished with exit code 0

这是为什么呢?

原因就是slot的复用导致的,虽然这个数组的生命周期结束了,但是整个方法运行完,局部变量表并没有进行改变,GC ROOT 也没有变过,因此并没有进行gc回收。

我们继续改变:

public class TestDemo {
   
   
    public static void main(String[] args) {
   
   
        {
   
   
            byte[] b = new byte[64 * 1024 * 1024];
        }
        int aaa = 0;
        System.gc();
    }
}

我们定义了一个变量,根据slot的复用规则,bbbb的生命周期结束后,又来了一个aaa的局部变量,这样就会把bbbb的slot槽复用了,引用的那个地址就被丢弃了,这样的话gc就会回收。

[GC (System.gc())  69468K->66088K(251392K), 0.0017629 secs]
[Full GC (System.gc())  66088K->410K(251392K), 0.0053990 secs]

Process finished with exit code 0
3.1.2 操作数栈

操作数栈也是一种栈结构,操作数栈,主要是用来进行运算的时候来进行保存中间量和结果的。

我们先来看一段代码:

public class OperandStack{
   
   
  public static int add(int a, int b){
   
   
      int c = a + b;
      return c;
  }

  public static void main(String[] args){
   
   
      add(100, 98);
  }
}

上面的代码,在进行运算add(100,98)的过程是,首先开始的时候,操作数栈为空,开始计算的时候,把第一个操作数也就是100压入栈中,然后把第二个操作数98压入栈中,然后开始计算,依次弹出两个操作数,把98和100弹出计算成198,然后把198压入栈,最后弹出198,完成。

img

综上所述,我们可以知道,操作数栈是线程私有的,方法的递归调用也有使操作数栈的深度增加,因此在递归调用的时候很容易出现栈溢出的异常。操作数栈所需要的空间 > JVM中允许分配的最大空间。

当操作数栈无法申请到足够的所需要的内存空间,就会引起 OOM。

3.2 本地方法栈

本地方法栈的原理和JVM栈的原理类似,因此,参考上面即可,二者最大的区别就是JVM栈中保存的是Java的方法执行的过程,本地方法栈执行的是系统本地的方法。

4. 堆

堆是JVM中内存共享的区域,主要是用来存放对象的一个内存空间,当然,堆也是所有的内存空间中最大的一个。堆的机构如图所示:

在这里插入图片描述

在Java8之后,永久代就改名为元空间了,metaspace:

在这里插入图片描述

然后我们可一从纵向看一下:

img

对主要分为新生代和老年代,新生代中分为伊甸区和幸存区,幸存区分为from和to,一般来说,eden:from:to = 8:1:1的内存大小分配。

一个对象刚被创建,会被分配到eden区,当eden区满了之后,gc会进行一次 minor gc,清空eden和from区,把幸存下来的放到to

下一次满的时候,就会清空eden和to,把幸存下来的放入到 from中。当对象的年龄超过一定的阈值之后,就会转到老年区,老年区满了之后,就会触发一次fullGC,这是会把整个堆的无用对象给清除。如果剩下来的内存还不足以分配给新来的对象,就会触发OOM。

相关文章
|
19天前
|
Java 编译器 开发者
深入理解Java内存模型(JMM)及其对并发编程的影响
【9月更文挑战第37天】在Java的世界里,内存模型是隐藏在代码背后的守护者,它默默地协调着多线程环境下的数据一致性和可见性问题。本文将揭开Java内存模型的神秘面纱,带领读者探索其对并发编程实践的深远影响。通过深入浅出的方式,我们将了解内存模型的基本概念、工作原理以及如何在实际开发中正确应用这些知识,确保程序的正确性和高效性。
|
11天前
|
缓存 算法 Java
Java中的内存管理:理解与优化
【10月更文挑战第6天】 在Java编程中,内存管理是一个至关重要的主题。本文将深入探讨Java内存模型及其垃圾回收机制,并分享一些优化内存使用的策略和最佳实践。通过掌握这些知识,您可以提高Java应用的性能和稳定性。
36 4
|
11天前
|
存储 监控 算法
Java中的内存管理:理解Garbage Collection机制
本文将深入探讨Java编程语言中的内存管理,着重介绍垃圾回收(Garbage Collection, GC)机制。通过阐述GC的工作原理、常见算法及其在Java中的应用,帮助读者提高程序的性能和稳定性。我们将从基本原理出发,逐步深入到调优实践,为开发者提供一套系统的理解和优化Java应用中内存管理的方法。
|
1天前
|
存储 算法 Java
🚀Java零基础-顺序结构详解 🚀
【10月更文挑战第11天】本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!
18 6
|
4天前
|
存储 监控 算法
Java中的内存管理与垃圾回收机制解析
本文深入探讨了Java编程语言中的内存管理方式,特别是垃圾回收机制。我们将了解Java的自动内存管理是如何工作的,它如何帮助开发者避免常见的内存泄漏问题。通过分析不同垃圾回收算法(如标记-清除、复制和标记-整理)以及JVM如何选择合适的垃圾回收策略,本文旨在帮助Java开发者更好地理解和优化应用程序的性能。
|
6天前
|
存储 Java
Java内存模型
【10月更文挑战第11天】Java 内存模型(JMM)是 Java 虚拟机规范中定义的多线程内存访问机制,解决内存可见性、原子性和有序性问题。它定义了主内存和工作内存的概念,以及可见性、原子性和有序性的规则,确保多线程环境下的数据一致性和操作正确性。使用 `synchronized` 和 `volatile` 等同步机制可有效避免数据竞争和不一致问题。
16 3
|
6天前
|
缓存 安全 Java
使用 Java 内存模型解决多线程中的数据竞争问题
【10月更文挑战第11天】在 Java 多线程编程中,数据竞争是一个常见问题。通过使用 `synchronized` 关键字、`volatile` 关键字、原子类、显式锁、避免共享可变数据、合理设计数据结构、遵循线程安全原则和使用线程池等方法,可以有效解决数据竞争问题,确保程序的正确性和稳定性。
13 2
|
9天前
|
Java 数据挖掘 数据库连接
Java使用直接内存的好处
综上所述,Java直接内存的使用为开发者提供了一种绕过JVM堆限制、直接高效操作内存资源的途径,特别适用于高吞吐量、低延迟和大规模数据处理的场景。虽然直接内存的使用需要更精细的管理以避免内存泄漏和过度消耗系统资源,但恰当的利用能够显著提升应用的性能表现,是现代高性能Java应用不可或缺的工具之一。
10 2
|
8天前
|
小程序 Oracle Java
JVM知识体系学习一:JVM了解基础、java编译后class文件的类结构详解,class分析工具 javap 和 jclasslib 的使用
这篇文章是关于JVM基础知识的介绍,包括JVM的跨平台和跨语言特性、Class文件格式的详细解析,以及如何使用javap和jclasslib工具来分析Class文件。
21 0
JVM知识体系学习一:JVM了解基础、java编译后class文件的类结构详解,class分析工具 javap 和 jclasslib 的使用
|
10天前
|
Java 数据挖掘 数据库连接
Java使用直接内存的好处
综上所述,Java直接内存的使用为开发者提供了一种绕过JVM堆限制、直接高效操作内存资源的途径,特别适用于高吞吐量、低延迟和大规模数据处理的场景。虽然直接内存的使用需要更精细的管理以避免内存泄漏和过度消耗系统资源,但恰当的利用能够显著提升应用的性能表现,是现代高性能Java应用不可或缺的工具之一。
26 1