Python爬虫实战:利用代理IP爬取某瓣电影排行榜并写入Excel(附上完整源码)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Python爬虫实战:利用代理IP爬取某瓣电影排行榜并写入Excel(附上完整源码)

1. 爬虫和代理IP的关系

爬虫是指通过编写程序自动获取互联网上的信息的技术。爬虫可以模拟人的行为,在网页上浏览、点击、输入数据等,从而获取网页上的各种信息,如文本、图片、视频等。爬虫可以用于各种目的,如搜索引擎的索引、数据分析、信息监测等。

代理IP是指通过中间服务器转发网络请求的技术。在爬虫中,使用代理IP可以隐藏真实的访问源,防止被目标网站封禁或限制访问。代理IP可以分为正向代理和反向代理。正向代理是由客户端主动使用代理服务器来访问目标网站,而反向代理是目标网站使用代理服务器来处理客户端的请求。

图片.png

2. 使用代理IP的好处

使用代理IP可以带来以下好处:

  1. 隐藏真实的访问源,保护个人或机构的隐私和安全。
  2. 绕过目标网站的访问限制,如IP封禁、地区限制等。
  3. 分散访问压力,提高爬取效率和稳定性。
  4. 收集不同地区或代理服务器上的数据,用于数据分析和对比。

然而,使用代理IP也存在一些挑战和注意事项:

  1. 代理IP的质量参差不齐,有些代理服务器可能不稳定、速度慢或存在安全风险。
  2. 一些目标网站会检测和封禁常用的代理IP,需要不断更换和验证代理IP的可用性。
  3. 使用代理IP可能增加网络请求的延迟和复杂性,需要合理配置和调整爬虫程序。
  4. 使用代理IP需要遵守相关法律法规和目标网站的使用规则,不得进行非法活动或滥用代理IP服务。

博主这里使用的亮数据家的动态代理IP,IP质量很高个人感觉还不错,公司用户可以免费使用:点击试用

图片.png

3. 爬取目标

这次爬虫实战的目标是某瓣电影Top250排行榜,爬取的字段:排名、电影名、评分、评价人数、制片国家、电影类型、上映时间、主演、影片链接

图片.png

预期效果写入Excel:
图片.png

4. 准备工作

Python:3.10

编辑器:PyCharm

第三方模块,自行安装:

pip install requests # 网页数据爬取
pip install pandas # 数据处理
pip install xlwt # 写入Excel
pip install lxml # 提取网页数据

5. 爬虫实现

5.1 获取代理IP

1、打开亮数据的官网,点击立刻使用:点击试用

图片.png

2、输入账号密码注册账号:

图片.png

3、注册后以后点击查看代理IP产品:

图片.png

4、选择适合自己ide产品,如果你使用公司邮件注册,可以找客服开通免费试用:

图片.png

5、获取代理IP后通过proxies参数添加代理发送请求,案例代码:

proxies = {
  "http": "http://IP地址:端口号",   # http型
  "https": "https://IP地址:端口号"   # https型
}
response = requests.get(url,headers=headers,proxies=proxies)

5.2 导入模块

import re # 正则,用于提取字符串
import pandas as pd # pandas,用于写入Excel文件
import requests  # python基础爬虫库
from lxml import etree  # 可以将网页转换为Elements对象
import time  # 防止爬取过快可以睡眠一秒

5.3 设置翻页

首先我们来分析一下网站的翻页,一共有10页:

图片.png

第一页主页为:

https://movie.douban.com/top250?start=0&filter=

第二页:

https://movie.douban.com/top250?start=25&filter=

第三页:

https://movie.douban.com/top250?start=50&filter=

可以看出每页只有start=后面的参数每次上涨25,所以用循环来构造10页网页链接:

def main():
    data_list = [] # 空列表用于存储每页获取到的数据
    for i in range(10):
        url = 'https://movie.douban.com/top250?start='+str(i*25)+'&filter='

5.4 发送请求

这里我们创建一个get_html_str(url)函数传入网页url链接,通过添加请求头和代理IP发送请求获取网页源码(注意:这里代理IP这里需要看5.1 获取代理IP自己去获取,博主的已过期):

def get_html_str(url):
    """发送请求,获取响应"""
    # 请求头模拟浏览器
    headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36'}

    # 添加代理IP(这里代理IP这里需要看`5.1 获取代理IP`自己去获取,博主的已过期)
    proxies = {
        "http": "http://183.134.17.12:9181",
    }
    # 添加请求头和代理IP发送请求
    response = requests.get(url,headers=headers,proxies=proxies)
    # 获取网页源码
    html_str = response.content.decode()
    # 返回网页源码
    return html_str

5.5 提取数据

当我们拿到网页源码后,创建一个get_data(html_str,data_list)函数传入html_str也就是网页源码、data_list用于存储数据,就可以使用xpath开始解析数据了

1、分析网页结构,可以看到每一个电影都在ol标签下的li标签下:

图片.png

2、然后我们看li标签的数据是否完整,可以看到我们需要的字段都有:

图片.png

3、接下来开始写解析代码:

def get_data(html_str, data_list):
    """提取数据写入列表"""
    # 将html字符串转换为etree对象方便后面使用xpath进行解析
    html_data = etree.HTML(html_str)
    # 利用xpath取到所有的li标签
    li_list = html_data.xpath("//ol[@class='grid_view']/li")
    # 打印一下li标签个数看是否和一页的电影个数对得上
    print(len(li_list))  # 输出25,没有问题
    # 遍历li_list列表取到某一个电影的对象
    for li in li_list:
        # 用xpath获取每一个字段信息
        # 排名
        ranking = li.xpath(".//div[@class='pic']/em/text()")[0]
        # 电影名
        title = li.xpath(".//div[@class='hd']/a/span[1]/text()")[0]
        # 评分
        score = li.xpath(".//span[@class='rating_num']/text()")[0]
        # 评价人数
        evaluators_number = li.xpath(".//div[@class='star']/span[4]/text()")[0]
        evaluators_number = evaluators_number.replace('人评价', '')  # 将'人评价'替换为替换为空,更美观
        # 导演、主演
        str1 = li.xpath(".//div[@class='bd']/p[1]//text()")[0]
        # 利用正则提取导演名
        try:
            director = re.findall("导演: (.*?)主演", str1)[0]
            director = re.sub('\xa0', '', director)
        except:
            director = None
        # 利用正则提取主演
        try:
            performer = re.findall("主演: (.*)", str1)[0]
            performer = re.sub('\xa0', '', performer)
        except:
            performer = None
        # 上映时间、制片国家、电影类型都在这里标签下
        str2 = li.xpath(".//div[@class='bd']/p[1]//text()")[1]
        #
        try:
            # 通过斜杠进行分割
            str2_list = str2.split(' / ')
            # 年份
            year = re.sub('[\n ]', '', str2_list[0])
            # 制片国家
            country = str2_list[1]
            # 影片类型
            type = re.sub('[\n ]', '', str2_list[2])
        except:
            year = None
            country = None
            type = None
        url = li.xpath(".//div[@class='hd']/a/@href")[0]
        print({'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
               '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})
        data_list.append(
            {'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
             '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})

运行结果:

图片.png

5.6 保存数据

当我们提取完数据以后就可以写入用pandas写入Excel表格中,创建into_excel(data_list)函数,将存储数据的data_list列表作为参数传入,然后用pandas的to_excel函数写入excel表格:

def into_excel(data_list):
    # 创建DataFrame对象
    df = pd.DataFrame(data_list)
    # 写入excel文件
    df.to_excel('电影Top250排行.xlsx')

5.7 调用主函数

第一步设置翻页,然后获取网页源码,接着提取数据,限制爬取的速度,最后写入Excel文件

def main():
    data_list = []  # 空列表用于存储每页获取到的数据
    # 1. 设置翻页
    for i in range(10):
        url = 'https://movie.douban.com/top250?start=' + str(i * 25) + '&filter='
        # 2. 获取网页源码
        html_str = get_html_str(url)
        # 3. 提取数据
        get_data(html_str, data_list)
        # 4. 限制爬取的速度
        time.sleep(5)
    # 5. 写入excel
    into_excel(data_list)

5.8 完整源码

这里附上完整源码(注意:get_html_str(url)函数中的代理IP这里需要看5.1 获取代理IP自己去获取,博主的已过期),然后直接运行程序即可:

import re # 正则,用于提取字符串
import pandas as pd # pandas,用于写入Excel文件
import requests  # python基础爬虫库
from lxml import etree  # 可以将网页转换为Elements对象
import time  # 防止爬取过快可以睡眠一秒


def get_html_str(url):
    """发送请求,获取响应"""
    # 请求头模拟浏览器
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36'}

    # 添加代理IP(这里代理IP这里需要看`5.1 获取代理IP`自己去获取,博主的已过期)
    proxies = {
        "http": "http://183.134.17.12:9181",
    }
    # 添加请求头和代理IP发送请求
    response = requests.get(url, headers=headers, proxies=proxies)  #
    # 获取网页源码
    html_str = response.content.decode()
    # 返回网页源码
    return html_str


def get_data(html_str, data_list):
    """提取数据写入列表"""
    # 将html字符串转换为etree对象方便后面使用xpath进行解析
    html_data = etree.HTML(html_str)
    # 利用xpath取到所有的li标签
    li_list = html_data.xpath("//ol[@class='grid_view']/li")
    # 打印一下li标签个数看是否和一页的电影个数对得上
    print(len(li_list))  # 输出25,没有问题
    # 遍历li_list列表取到某一个电影的对象
    for li in li_list:
        # 用xpath获取每一个字段信息
        # 排名
        ranking = li.xpath(".//div[@class='pic']/em/text()")[0]
        # 电影名
        title = li.xpath(".//div[@class='hd']/a/span[1]/text()")[0]
        # 评分
        score = li.xpath(".//span[@class='rating_num']/text()")[0]
        # 评价人数
        evaluators_number = li.xpath(".//div[@class='star']/span[4]/text()")[0]
        evaluators_number = evaluators_number.replace('人评价', '')  # 将'人评价'替换为替换为空,更美观
        # 导演、主演
        str1 = li.xpath(".//div[@class='bd']/p[1]//text()")[0]
        # 利用正则提取导演名
        try:
            director = re.findall("导演: (.*?)主演", str1)[0]
            director = re.sub('\xa0', '', director)
        except:
            director = None
        # 利用正则提取主演
        try:
            performer = re.findall("主演: (.*)", str1)[0]
            performer = re.sub('\xa0', '', performer)
        except:
            performer = None
        # 上映时间、制片国家、电影类型都在这里标签下
        str2 = li.xpath(".//div[@class='bd']/p[1]//text()")[1]
        #
        try:
            # 通过斜杠进行分割
            str2_list = str2.split(' / ')
            # 年份
            year = re.sub('[\n ]', '', str2_list[0])
            # 制片国家
            country = str2_list[1]
            # 影片类型
            type = re.sub('[\n ]', '', str2_list[2])
        except:
            year = None
            country = None
            type = None
        url = li.xpath(".//div[@class='hd']/a/@href")[0]
        print({'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
               '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})
        data_list.append(
            {'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
             '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})


def into_excel(data_list):
    # 创建DataFrame对象
    df = pd.DataFrame(data_list)
    # 写入excel文件
    df.to_excel('电影Top250排行.xlsx')


def main():
    data_list = []  # 空列表用于存储每页获取到的数据
    # 1. 设置翻页
    for i in range(10):
        url = 'https://movie.douban.com/top250?start=' + str(i * 25) + '&filter='
        # 2. 获取网页源码
        html_str = get_html_str(url)
        # 3. 提取数据
        get_data(html_str, data_list)
        # 4. 限制爬取的速度
        time.sleep(5)
    # 5. 写入excel
    into_excel(data_list)


if __name__ == "__main__":
    main()

程序运行完毕后生成excel文件:

图片.png

6. 获取免费定制数据

上面我们讲了如何利用Python爬虫获取数据,博主估摸着还是有很多小伙伴不知道怎么写爬虫代码,博主使用亮数据代理IP时偶然发现竟然还有免费的数据集可以下载,不会爬虫和想偷懒的小伙伴可以省事了:

1、进入亮数据官网,点击网络数据,然后点击获取获取免费样本:点击免费领取
图片.png

2、输入好个人信息和需要的数据集名称后,点击提交:

图片.png

3、然后等着客服免费送数据集就可以啦,欧耶:

图片.png

相关文章
|
19天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
61 6
|
1月前
|
数据采集 JSON 算法
Python爬虫——基于JWT的模拟登录爬取实战
Python爬虫——基于JWT的模拟登录爬取实战
Python爬虫——基于JWT的模拟登录爬取实战
|
2月前
|
数据采集 JavaScript C#
C#图像爬虫实战:从Walmart网站下载图片
C#图像爬虫实战:从Walmart网站下载图片
|
1月前
|
数据采集 存储 数据挖掘
深入探索 Python 爬虫:高级技术与实战应用
本文介绍了Python爬虫的高级技术,涵盖并发处理、反爬虫策略(如验证码识别与模拟登录)及数据存储与处理方法。通过asyncio库实现异步爬虫,提升效率;利用tesseract和requests库应对反爬措施;借助SQLAlchemy和pandas进行数据存储与分析。实战部分展示了如何爬取电商网站的商品信息及新闻网站的文章内容。提醒读者在实际应用中需遵守法律法规。
186 66
|
20天前
|
数据采集 Web App开发 前端开发
Python爬虫进阶:Selenium在动态网页抓取中的实战
【10月更文挑战第26天】动态网页抓取是网络爬虫的难点,因为数据通常通过JavaScript异步加载。Selenium通过模拟浏览器行为,可以加载和执行JavaScript,从而获取动态网页的完整内容。本文通过实战案例,介绍如何使用Selenium在Python中抓取动态网页。首先安装Selenium库和浏览器驱动,然后通过示例代码展示如何抓取英国国家美术馆的图片信息。
44 6
|
20天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
47 4
|
1月前
|
数据采集 JSON 前端开发
JavaScript逆向爬虫实战分析
JavaScript逆向爬虫实战分析
|
1月前
|
数据采集 前端开发 NoSQL
Python编程异步爬虫实战案例
Python编程异步爬虫实战案例
|
2月前
|
数据采集 中间件 定位技术
新手爬虫er必刷!如何使用代理IP全攻略!
在爬虫开发中,代理IP是规避IP封锁和请求频率限制的重要工具,通过分散请求压力并模拟不同地理位置,提高数据抓取稳定性和成功率。本文详细介绍了代理IP的基本概念、选择服务的关键因素、获取及使用方法,包括Python中的Requests库和Scrapy框架的具体应用,以及IP管理与轮换策略,帮助新手掌握代理IP的使用技巧。
|
2月前
|
数据采集 API 开发者
🚀告别网络爬虫小白!urllib与requests联手,Python网络请求实战全攻略
在网络的广阔世界里,Python凭借其简洁的语法和强大的库支持,成为开发网络爬虫的首选语言。本文将通过实战案例,带你探索urllib和requests两大神器的魅力。urllib作为Python内置库,虽API稍显繁琐,但有助于理解HTTP请求本质;requests则简化了请求流程,使开发者更专注于业务逻辑。从基本的网页内容抓取到处理Cookies与Session,我们将逐一剖析,助你从爬虫新手成长为高手。
67 1
下一篇
无影云桌面