基于SVD奇异值分解算法的人脸身份识别matlab仿真

简介: 基于SVD奇异值分解算法的人脸身份识别matlab仿真

1.算法理论概述
人脸身份识别是计算机视觉领域中的一个重要研究方向,它可以对人脸图像进行识别和验证。人脸身份识别在人脸识别门禁系统、安全监控等领域有着广泛的应用。将介绍一种基于SVD奇异值分解算法的人脸身份识别方法,该方法使用SVD分解将人脸图像表示为低维特征向量,然后使用最近邻分类器将待分类的人脸图像与已知的人脸图像进行比较。

特征提取
人脸身份识别算法的第一步是对人脸图像进行特征提取,将人脸图像转化为特征向量。常用的特征提取方法包括主成分分析(PCA)和线性判别分析(LDA)。在本文中,我们将使用SVD奇异值分解来提取人脸图像的特征向量。具体地,我们将人脸图像表示为一个矩阵X,其中每一列代表一张人脸图像,然后对X进行SVD分解,即

a7275df0af7a12ccbbc4e7c377d126ae_82780907_202307251457040678932460_Expires=1690268824&Signature=wJEgtW8bxbkkkvt%2FFYVglgo0AdU%3D&domain=8.png

其中,$\delta(c_i,c_j)$是一个指示函数,当$c_i=c_j$时取值为1,否则取值为0。

实现步骤

数据预处理
在实现算法之前,我们需要进行数据预处理,将人脸图像转化为矩阵形式。具体地,我们可以将每张人脸图像转化为一个向量,然后将这些向量按列排列成一个矩阵$X$。在这个矩阵中,每一列代表一张人脸图像,每一行代表一维特征。我们可以使用标准的图像处理库,如OpenCV和PIL来实现这个步骤。

SVD分解
在进行SVD分解之前,我们需要对数据进行归一化处理,将每一维特征都缩放到相同的范围内。常用的归一化方法包括将每一维特征都减去均值,然后除以标准差。然后,我们对归一化后的矩阵$X$进行SVD分解,得到三个矩阵$U$,$\Sigma$和$V^T$。我们可以根据需要保留前$k$个奇异值,然后将$U_k$作为特征向量,即

c3c48031ee0300b1cb4c648f476e601e_82780907_202307251458080022846088_Expires=1690268888&Signature=YLHJqaAM%2FlLDBQcNhkrpe7lXBHE%3D&domain=8.png

最近邻分类器
在进行最近邻分类器之前,我们需要将已知的人脸图像集合$D$划分为训练集和测试集。通常情况下,我们将80%的图像作为训练集,剩下的20%的图像作为测试集。对于每个测试样本,我们将它的特征向量$f(x)$与训练集中的所有样本进行比较,选取距离最近的$n$个样本,并将它们所属的身份类别作为预测类别。在实现最近邻分类器时,我们可以使用Python中的scikit-learn库来实现。

2.算法运行软件版本
MATLAB2022a

3.算法运行效果图预览

f5f71b8f6bed69513088a13b21472515_82780907_202307251458230600586923_Expires=1690268903&Signature=bYddG7AhDmFsWEBAapiXbGrS3gI%3D&domain=8.png

4.部分核心程序

```% 计算每个已知个体的坐标向量xi
rank = size(A, 2);
xi = u(:, 1:rank)' A;
% 定义阈值,这些值是通过反复试验来定义的
epsilon_0 = 50; % 与训练集中任何已知人脸的最大允许距离S
epsilon_1 = 15; % 与面空间的最大允许距离
% 分类
images{1} = ['test/1.jpg'];
images{2} = ['test/3.jpg'];
images{3} = ['test/5.jpg'];
images{4} = ['test/11.jpg'];
images{5} = ['test/25.jpg'];
images{6} = ['test/nothing.jpg'];
images{7} = ['test/X.jpg'];
figure;% 创建一个新的图形窗口
for jj = 1:length(images)
images{jj}
epsilons = zeros(N, 1); % 初始化距离向量
test_image = readImage(images{jj});% 读取待识别图像
test_image = test_image(:) - train_mean; % 标准化测试图像
x = u(:, 1:rank)'
test_image; % 计算测试图像的坐标向量x
epsilon_f = ((test_image - u(:, 1:rank) x)' (test_image - u(:, 1:rank) x)) ^ 0.5;
subplot(3,3,jj); % 在图形窗口中创建一个子图
imshow(readImage(images{jj}),[]);% 显示待识别图像
% 检查它是否在面空间中
if epsilon_f < epsilon_1
% 计算待识别图像到人脸空间的距离ε
for i = 1:N
epsilons(i, 1) = (xi(:, i) - x)'
(xi(:, i) - x);
end
[val idx] = min(epsilons(:, 1)); % 找到到人脸空间距离最近的已知个体
if val < epsilon_0% 如果到已知个体的最大允许距离内
disp(sprintf('当前测试图片属于图片序号 %d', idx));% 输出识别结果所属的个体编号
title(['当前测试图片属于图片序号:', num2str(idx)]); % 在子图中添加标题显示识别结果
else
disp('未知人脸');% 输出无法识别的结果
title(['未知人脸']);% 在子图中添加标题显示无法识别的结果
end
else
disp('当前输入图片不存在人脸图片'); % 输出输入图像中不存在人脸的结果
title(['不存在人脸']);% 在子图中添加标题显示输入图像中不存在人脸的结果
end

checks(jj)=val;% 将到人脸空间距离最近的已知个体与待识别图像的距离保存到checks向量中

end

```

相关文章
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
50 31
|
4天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
11天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
17天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
23天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
11天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
19天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
16天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
20天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。