基于KNN近邻分类的情感识别算法matlab仿真

简介: 基于KNN近邻分类的情感识别算法matlab仿真

1.算法理论概述
情感识别是自然语言处理领域中的一个重要研究方向。本文介绍了一种基于KNN近邻分类的情感识别算法,该算法使用词袋模型提取文本特征向量,计算文本特征向量之间的距离,并使用加权投票的方法确定待分类文本的情感类别。本文详细介绍了算法的数学模型和实现步骤,并通过实验验证了算法的准确率。

  情感识别是自然语言处理领域中的一个重要研究方向,它可以识别文本中的情感极性,如正面或负面情感。情感识别在社交媒体分析、电子商务、舆情监测等领域有着广泛的应用。本文将介绍一种基于KNN近邻分类的情感识别算法,该算法使用词袋模型提取文本特征向量,计算文本特征向量之间的距离,并使用加权投票的方法确定待分类文本的情感类别。

1.1特征提取

   情感识别算法的第一步是对文本进行特征提取,将文本转化为特征向量。常用的特征提取方法包括词袋模型(bag of words)和词向量模型(word embedding)。在本文中,我们将使用词袋模型来提取文本特征。具体地,我们首先将文本中的所有单词按照字典序排列,然后计算每个单词在文本中出现的次数,并将其作为特征向量的一个维度。

   假设我们有一个包含$n$个单词的字典$V={v_1,v_2,\cdots,v_n}$,并且我们要对一个包含$m$个单词的文本进行特征提取。我们将文本表示为一个$m$维向量$x=(x_1,x_2,\cdots,x_m)$,其中$x_i$表示第$i$个单词在文本中出现的次数。具体地,对于字典中的每个单词$v_j$,我们可以计算它在文本中出现的次数$c_j$,并将$c_j$作为$x$的第$j$个维度,即$x_j=c_j$。

f10558cb958a6f1123fbd8e82ee92bcb_82780907_202307241356150772558001_Expires=1690178775&Signature=HB8tkbSZ5PgXM5Rk5YSFFT8p3y0%3D&domain=8.png

1.3 实现步骤
基于上述数学模型,我们可以实现基于KNN近邻分类的情感识别算法。具体步骤如下:

   数据预处理:将训练集和测试集中的文本进行分词,并去除停用词和标点符号。然后将所有文本转化为特征向量,即将所有单词按照字典序排列,计算每个单词在文本中出现的次数,构成一个特征向量。

    计算距离:对于测试集中的每个文本,计算它与训练集中所有文本的距离。可以使用欧氏距离或余弦相似度来计算距离。

   选取最近邻:选取距离最近的k个文本作为测试集中文本的最近邻。

   加权投票:对于k个最近邻,计算它们所属的情感类别的加权和,并将加权和最大的情感类别作为测试集中文本的预测类别。

    评估算法准确率:使用评估指标(如准确率、精确率、召回率、F1值等)来评估算法的准确率。

2.算法运行软件版本
matlab2022a

3.算法运行效果图预览

4b8d3251626fff78c6075ee9fba7baf2_82780907_202307241357170115621314_Expires=1690178837&Signature=BcXi0WaVqQE7LsFTF9eHn20MbOU%3D&domain=8.png

4.部分核心程序

k          = 8; %设置K值,即最近邻的个数
Dist_matrix= zeros(size(trainVector,2),size(testVector,2));  %初始化欧氏距离矩阵

%计算欧氏距离
for i=1:size(testVector,2)
    for j=1:size(trainVector,2)
        Dist_matrix(j,i)=norm(testVector(:,i)-trainVector(:,j));  %计算测试集中第i个样本与训练集中第j个样本的欧氏距离
    end
end

%统计分类结果 
Ntest        = size(fearVec,2)-Ntrain;%测试集的样本数
EmtiCnt      = zeros(1,5);%初始化每个情感类别的正确识别个数
n1           = Ntrain;%第1个情感类别在训练集中的样本数
n2           = n1+Ntrain;%第2个情感类别在训练集中的样本数
n3           = n2+Ntrain;%第3个情感类别在训练集中的样本数
n4           = n3+Ntrain;%第4个情感类别在训练集中的样本数
n5           = n4+Ntrain;%第5个情感类别在训练集中的样本数

p1           = size(fearVec,2)-Ntrain;%第1个情感类别在测试集中的样本数
p2           = p1+size(hapVec,2)-Ntrain;%第2个情感类别在测试集中的样本数
p3           = p2+size(neutralVec,2)-Ntrain;%第3个情感类别在测试集中的样本数
p4           = p3+size(sadnessVec,2)-Ntrain;%第4个情感类别在测试集中的样本数
p5           = p4+size(angerVec,2)-Ntrain;%第5个情感类别在测试集中的样本数


for i=1:size(Dist_matrix,2)
    i
    flag=zeros(1,5); %初始化每个情感类别的近邻数
    [sortVec,index]=sort(Dist_matrix(:,i));%将第i个测试样本与所有训练样本的欧氏距离从小到大排序,并记录下标

    %统计K个近邻中各类别的数量
    for j=1:k
        if(n1>=index(j)&&index(j)>=1)
            flag(1)=flag(1)+1; %如果第j个近邻是第1个情感类别的训练样本,则第1个情感类别的近邻数加1
        elseif(n2>=index(j)&&index(j)>n1)
            flag(2)=flag(2)+1; %如果第j个近邻是第2个情感类别的训练样本,则第2个情感类别的近邻数加1
        elseif(n3>=index(j)&&index(j)>n2)
            flag(3)=flag(3)+1; %如果第j个近邻是第3个情感类别的训练样本,则第3个情感类别的近邻数加1
        elseif(n4>=index(j)&&index(j)>n3)
            flag(4)=flag(4)+1;%如果第j个近邻是第4个情感类别的训练样本,则第4个情感类别的近邻数加1
        else
            flag(5)=flag(5)+1;%如果第j个近邻是第5个情感类别的训练样本,则第5个情感类别的近邻数加1
        end
    end
    [~,index1]=sort(flag); %将各情感类别的近邻数从小到大排序,并记录下标
    if((p1>=i&&i>=1)&&index1(5)==1)
        EmtiCnt(index1(5))=EmtiCnt(index1(5))+1;%如果第i个测试样本被正确识别为第1个情感类别,则第1个情感类别的正确识别个数加1

    elseif((p2>=i&&i>p1)&&index1(5)==2)
        EmtiCnt(index1(5))=EmtiCnt(index1(5))+1;%如果第i个测试样本被正确识别为第2个情感类别,则第2个情感类别的正确识别个数加1

    elseif((p3>=i&&i>p2)&&index1(5)==3)
        EmtiCnt(index1(5))=EmtiCnt(index1(5))+1;%如果第i个测试样本被正确识别为第3个情感类别,则第3个情感类别的正确识别个数加1

    elseif((p4>=i&&i>p3)&&index1(5)==4)
        EmtiCnt(index1(5))=EmtiCnt(index1(5))+1;%如果第i个测试样本被正确识别为第4个情感类别,则第4个情感类别的正确识别个数加1

    elseif((p5>=i&&i>p4)&&index1(5)==5)
        EmtiCnt(index1(5))=EmtiCnt(index1(5))+1;%如果第i个测试样本被正确识别为第5个情感类别,则第5个情感类别的正确识别个数加1
    end
end
相关文章
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
50 31
|
4天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
11天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
11天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
17天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
23天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
19天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
16天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
20天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。