Redis分布式锁的原理和实现 (上)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis分布式锁的原理和实现

前言

  我们之前聊过redis的,对基础不了解的可以移步查看一下:

几分钟搞定redis存储session共享——设计实现:https://www.cnblogs.com/xiongze520/p/10333233.html

【原创】详细案例解剖——浅谈Redis缓存的常用5种方式(String,Hash,List,set,SetSorted ):https://www.cnblogs.com/xiongze520/p/10267804.html

  对同一个资源进行操作,单一的缓存读取没问题了,但是存在并发的时候怎么办呢,为了避免数据不一致,我们需要在操作共享资源之前进行加锁操作。

我们在开发很多业务场景会使用到锁,例如库存控制,抽奖,秒杀等。一般我们会使用内存锁的方式来保证线性的执行。

但现在大多站点都会使用分布式部署,那多台服务器间的就必须使用同一个目标来判断锁。分布式与单机情况下最大的不同在于其不是多线程而是多进程。

         图1:分布式站点使用内存锁

 

         图2:分布式站点使用分布式锁

 

当然我们暂时用不了这么复杂的场景,我们就简单访问redis就行。


 

设计(悲观锁/乐观锁)

悲观锁方式(认为操作的时候,会出现问题,所以都加锁)

悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,

所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。

传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。

 

乐观锁方式(认为什么时候不会出问题,所以不上锁,更新的时候去查询判断一下,再此期间是否有人修改过这个数据。)

乐观锁(Optimistic Lock), 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,

所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。

乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是提供的乐观锁。

 

  两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下,即冲突真的很少发生的时候,这样可以省去了锁的开销,

加大了系统的整个吞吐量。但如果经常产生冲突,上层应用会不断的进行retry,这样反倒是降低了性能,所以这种情况下用悲观锁就比较合适。


 

Redis三个命令

1、SETNX

SETNX key value:当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。

2、expire

expire key timeout:为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。

3、delete

delete key:删除key

在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。

 

命题:某商品进行库存秒杀。

假设要给某个商品举行秒杀活动,我们事先把库存数据100已经存入到了redis中,我们现在需要来进行库存扣减。

             图3:加锁请求示意图

 


代码实现

我们基于 ServiceStack.Redis 操作

 

我们创建一个控制台应用(.NET Framework),命名为 RedisLock ,注意,如果创建的是net core的应用,引入的ServiceStack.Redis就要选择core的。

然后在NuGet里面安装ServiceStack.Redis。

Redis连接池

 //Redis连接池(配置连接地址,读写连接地址等)
        public static PooledRedisClientManager RedisClientPool = CreateManager();
        private static PooledRedisClientManager CreateManager()
        {
            //写节点(主节点)
            List<string> writes = new List<string>();
            writes.Add("10.17.3.97:6379");  
            //读节点
            List<string> reads = new List<string>();
            reads.Add("10.17.3.97:6379");
            //配置连接池和读写分类
            return new PooledRedisClientManager(writes, reads, new RedisClientManagerConfig()
            {
                MaxReadPoolSize = 50, //读节点个数
                MaxWritePoolSize = 50,//写节点个数
                AutoStart = true,
                DefaultDb = 0
            });
        }

使用Redis的SetNX命令实现加锁

/// <summary>
        /// 加锁(使用Redis的SetNX命令实现加锁)
        /// </summary>
        /// <param name="key">锁key</param>
        /// <param name="selfMark">自己标记</param>
        /// <param name="lockExpirySeconds">锁自动过期时间[默认10](s)</param>
        /// <param name="waitLockMilliseconds">等待锁时间(ms)</param>
        /// <returns></returns>
        public static bool Lock(string key, out string selfMark, int lockExpirySeconds = 10, long waitLockMilliseconds = long.MaxValue)
        {
            DateTime begin = DateTime.Now;
            selfMark = Guid.NewGuid().ToString("N");//自己标记,释放锁时会用到,自己加的锁除非过期否则只能自己打开
            using (RedisClient redisClient = (RedisClient)RedisClientPool.GetClient())
            {
                string lockKey = "Lock:" + key;
                while (true)
                {
                    string script = string.Format("if redis.call('SETNX', KEYS[1], ARGV[1]) == 1 then redis.call('PEXPIRE',KEYS[1],{0}) return 1 else return 0 end", lockExpirySeconds * 1000);
                    //循环获取取锁
                    if (redisClient.ExecLuaAsInt(script, new[] { lockKey }, new[] { selfMark }) == 1)
                    {
                        return true;
                    }
                    //不等待锁则返回
                    if (waitLockMilliseconds == 0)
                    {
                        break;
                    }
                    //超过等待时间,则不再等待
                    if ((DateTime.Now - begin).TotalMilliseconds >= waitLockMilliseconds)
                    {
                        break;
                    }
                    Thread.Sleep(100);
                }
                return false;
            }
        }

因为ServiceStack.Redis提供的SetNX方法,并没有提供设置过期时间的方法,对于加锁业务又不能分开执行(如果加锁成功设置过期时间失败导致的永久死锁问题),所以就使用脚本实现,解决了异常情况死锁问题.

如果设置为0,为乐观锁机制,获取不到锁,直接返回未获取到锁.

默认值为long最大值,为悲观锁机制,约等于很多很多天,可以理解为一直等待.

 

释放锁

/// <summary>
        /// 释放锁
        /// </summary>
        /// <param name="key">锁key</param>
        /// <param name="selfMark">自己标记</param>
        public static void UnLock(string key, string selfMark)
        {
            using (RedisClient redisClient = (RedisClient)RedisClientPool.GetClient())
            {
                string lockKey = "Lock:" + key;
                var script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
                redisClient.ExecLuaAsString(script, new[] { lockKey }, new[] { selfMark });
            }
        }
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
29天前
|
存储 Dubbo Java
分布式 RPC 底层原理详解,看这篇就够了!
本文详解分布式RPC的底层原理与系统设计,大厂面试高频,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
分布式 RPC 底层原理详解,看这篇就够了!
|
12天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
35 5
|
12天前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
40 4
|
16天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
32 8
|
1月前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
55 16
|
25天前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
37 5
|
机器学习/深度学习 缓存 NoSQL
|
缓存 NoSQL Java
为什么分布式一定要有redis?
1、为什么使用redis 分析:博主觉得在项目中使用redis,主要是从两个角度去考虑:性能和并发。当然,redis还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其他功能,完全还有其他中间件(如zookpeer等)代替,并不是非要使用redis。
1367 0
|
2月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
78 6