基于蚁群算法的三维路径规划

简介: 三维路径规划指在已知三维地图中,规划出一条从出发点到目标点满足某项指标最优,并且避开了所有三维障碍物的三维最优路径。现有的路径规划算法中,大部分算法是在二维规划平面或准二维规划平面中进行路径规划。一般的三维路径规划算法具有计算过程复杂、信息存储量大、难以直接进行全局规划等问题。已有的三维路径规划算法主要包括A*算法、遗传算法、粒子群算法等,但是A*算法的计算量会随着维数的增加而急剧增加,遗传算法和粒子群算法只是准三维规划算法。

 1 理论基础

1.1 三维路径规划问题概述

       三维路径规划指在已知三维地图中,规划出一条从出发点到目标点满足某项指标最优,并且避开了所有三维障碍物的三维最优路径。现有的路径规划算法中,大部分算法是在二维规划平面或准二维规划平面中进行路径规划。一般的三维路径规划算法具有计算过程复杂、信息存储量大、难以直接进行全局规划等问题。已有的三维路径规划算法主要包括A*算法、遗传算法、粒子群算法等,但是A*算法的计算量会随着维数的增加而急剧增加,遗传算法和粒子群算法只是准三维规划算法。

       蚁群算法具有分布计算、群体智能等优势,在路径规划上具有很大潜力,在成功用于二维路径规划的同时也可用于三维路径规划,本章采用蚁群算法进行水下机器人三维路径规划。

1.2 三维空间抽象建模

       三维路径规划算法首先需要从三维地图中抽象出三维空间模型,模型抽象方法如下:首先把三维地图左下角的顶点作为三维空间的坐标原点A,在点A中建立三维坐标系,其中,x轴为沿经度增加的方向,y轴为沿纬度增加的方向,z轴为垂直于海平面方向。在该坐标系中以点A为顶点,沿x轴方向取三维地图的最大长度AB,沿y轴方向取三维地图的最大长度AA',沿z轴方向取三维地图的最大长度AB,这样就构造了包含三维地图的立方体区域ABCD-A'B'C'D',该区域即为三维路径的规划空间。三维路径规划空间如图1所示。三维路径空间建立起来之后,采用等分空间的方法从三维空间中抽取出三维路径规划所需的网格点。首先沿边AB把规划空间ABCD-A'B'C'D'进行等分,得到n+1个平面Ⅱi(i=1,2,…,n),然后对这n+1个平面沿边AD进行m等分,沿边AA'进行l等分,并且求解出里面的交点。平面划分如图2所示。

       通过以上步骤,整个规划空间ABCD-A'B'’C'D'就离散化为一个三维点集合,集合中的任意一点对应着两个坐标,即序号坐标a1(i,j,k)(i=0,1,2,…,n,j=0,1,2,…,m,k=0,1,2, …,l)和位置坐标a2 (xi ,yi, zi), 其中,i,j,k分别为当前点a沿边AA,边AD,边AA'的划分序号。蚁群算法即在这些三维路径点上进行规划,最终得到连接出发点和目标点满足某项指标最优的三维路径。

image.gif

image.gif2案例背景

2.1问题描述

       采用蚁群算法在跨度为21 km×21 km的一片海域中搜索从起点到终点,并且避开所有障碍物的路径,为了方便问题的求解,取该区域内最深点的高度为0,其他点高度根据和最深点高度差依次取得。路径规划起点坐标为(1,10,800),终点坐标为(21,4,1 000),规划环境和起点、终点如图3所示。整个搜索空间为21 km×21 km的海域,其中,起点坐标为(1,10,800),终点坐标为(21,4,1 000)。

       基于蚁群算法的三维路径搜索算法的算法流程如图4所示。

image.gifimage.gif

       其中,三维环境建模模块根据1.2节抽取出三维环境数学模型;搜索节点模块根据启发函数搜索下个节点;信息素更新模块更新环境中节点的信息素值。

2.3 信息素更新

       蚁群算法使用信息素吸引蚂蚁搜索,信息素位置设定及更新方法对于蚁群算法的成功搜索具有非常重要的意义。在1.2节中已经把整个搜索空间离散为一系列的三维离散点,这些离散点为蚁群算法需要搜索的节点。因此,把信息素存储在模型的离散点中,每个离散点都有一个信息素的值,该点信息素的大小代表对蚂蚁的吸引程度,各点信息素在每只蚂蚁经过后进行更新。信息素的更新包括局部更新和全局更新两部分,局部更新是指当蚂蚁经过该点时,该点的信息素就减少,局部更新的目的是增加蚂蚁搜索未经过点的概率,达到全局搜索的目的。局部信息素更新随着蚂蚁的搜索进行,信息素更新公式为

image.gif2.4可视搜索空间

       取α轴方向作为三维路径规划的主方向,水下机器人沿工轴方向前进,为了降低规划复杂程度,将水下机器人的运动简化为前向运动、横向运动和纵向运动三种运动方式。在前向运动一定单位长度距离Lx,max情况下,设定机器人最大横向移动允许距离为Ly,max,最大纵向移动距离为Lz,max。这样,当蚂蚁沿着α轴方向前进时,当位于点H(i,j,k)时,对下一个点的搜索就存在一个可视区域,可视区域如图5所示。

image.gif

       这样,当蚂蚁由当前点向下一个点移动时,可搜索的区域限制在蚂蚁搜索可视区域之内,简化了搜索空间,提高了蚁群算法的搜索效率。

2.5 蚁群搜索策略

       蚂蚁从当前点移动到下一个点时,根据启发函数来计算可视区域内各点的选择概率,启发函数为

image.gifimage.gif

3 MATLAB程序

       根据蚁群算法原理,在MATLAB中编程实现基于蚁群算法的三维路径规划算法。

3.1 启发值计算函数

       该函数主要用于计算可视区域内各点的启发值。

function qfz=CacuQfz(Nexty,Nexth,Nowy,Nowh,endy,endh,abscissa,HeightData)
%% 该函数用于计算各点的启发值
%Nexty Nexth    input    下个点坐标
%Nowy Nowh      input    当前点坐标
%endy endh      input    终点坐标
%abscissa       input    横坐标
%HeightData     input    地图高度
%qfz            output   启发值
%% 判断下个点是否可达
if HeightData(Nexty,abscissa)<Nexth*200
    S=1;
else
    S=0;
end
%% 计算启发值
%D距离
D=50/(sqrt(1+(Nowh*0.2-Nexth*0.2)^2+(Nexty-Nowy)^2)+sqrt((21-abscissa)^2 ...
    +(endh*0.2-Nexth*0.2)^2+(endy-Nowy)^2));
%计算高度
M=30/abs(Nexth+1);
%计算启发值
qfz=S*M*D;

image.gif

3.2适应度计算函数

       适应度计算函数主要用于计算每条路径的适应度值。

function fitness=CacuFit(path)
%% 该函数用于计算个体适应度值
%path       input     路径
%fitness    input     路径
[n,m]=size(path);
for i=1:n
    fitness(i)=0;
    for j=2:m/2
        %适应度值为长度加高度
        fitness(i)=fitness(i)+sqrt(1+(path(i,j*2-1)-path(i,(j-1)*2-1))^2 ...
            +(path(i,j*2)-path(i,(j-1)*2))^2)+abs(path(i,j*2));
    end
end

image.gif

3.3 路径搜索

       路径搜索函数采用蚁群算法根据信息素和启发值搜索从出发点到终点的三维路径。

function [path,pheromone]=searchpath(PopNumber,LevelGrid,PortGrid,pheromone,HeightData,starty,starth,endy,endh)
%% 该函数用于蚂蚁蚁群算法的路径规划
%LevelGrid     input    横向划分格数
%PortGrid      input    纵向划分个数
%pheromone     input    信息素
%HeightData    input    地图高度
%starty starth input    开始点
%path          output   规划路径
%pheromone     output   信息素
%% 搜索参数
ycMax=2;   %蚂蚁横向最大变动
hcMax=2;   %蚂蚁纵向最大变动
decr=0.9;  %信息素衰减概率
%% 循环搜索路径
for ii=1:PopNumber
    path(ii,1:2)=[starty,starth];  %记录路径
    NowPoint=[starty,starth];      %当前坐标点
    %% 计算点适应度值
    for abscissa=2:PortGrid-1
        %计算所有数据点对应的适应度值
        kk=1;
        for i=-ycMax:ycMax
            for j=-hcMax:hcMax
                NextPoint(kk,:)=[NowPoint(1)+i,NowPoint(2)+j];
                if (NextPoint(kk,1)<20)&&(NextPoint(kk,1)>0)&&(NextPoint(kk,2)<20)&&(NextPoint(kk,2)>0)
                    qfz(kk)=CacuQfz(NextPoint(kk,1),NextPoint(kk,2),NowPoint(1),NowPoint(2),endy,endh,abscissa,HeightData);
                    qz(kk)=qfz(kk)*pheromone(abscissa,NextPoint(kk,1),NextPoint(kk,2));
                    kk=kk+1;
                else
                    qz(kk)=0;
                    kk=kk+1;
                end
            end
        end
        %选择下个点
        sumq=qz./sum(qz);
        pick=rand;
        while pick==0
            pick=rand;
        end
        for i=1:25
            pick=pick-sumq(i);
            if pick<=0
                index=i;
                break;
            end
        end
        oldpoint=NextPoint(index,:);
        %更新信息素
        pheromone(abscissa+1,oldpoint(1),oldpoint(2))=0.5*pheromone(abscissa+1,oldpoint(1),oldpoint(2));
        %路径保存
        path(ii,abscissa*2-1:abscissa*2)=[oldpoint(1),oldpoint(2)];    
        NowPoint=oldpoint;
    end
    path(ii,41:42)=[endy,endh];
end

image.gif

3.4 主函数

       主函数主要用于蚁群算法的全局寻优,通过迭代寻找全局最优解,主要程序如下:

%% 该函数用于演示基于蚁群算法的三维路径规划算法
%% 清空环境
clc
clear
%% 数据初始化
%下载数据
load  HeightData HeightData
%网格划分
LevelGrid=10;
PortGrid=21;
%起点终点网格点 
starty=10;starth=4;
endy=8;endh=5;
m=1;
%算法参数
PopNumber=10;         %种群个数
BestFitness=[];    %最佳个体
%初始信息素
pheromone=ones(21,21,21);
%% 初始搜索路径
[path,pheromone]=searchpath(PopNumber,LevelGrid,PortGrid,pheromone, ...
    HeightData,starty,starth,endy,endh); 
fitness=CacuFit(path);                          %适应度计算
[bestfitness,bestindex]=min(fitness);           %最佳适应度
bestpath=path(bestindex,:);                     %最佳路径
BestFitness=[BestFitness;bestfitness];          %适应度值记录
%% 信息素更新
rou=0.2;
cfit=100/bestfitness;
for i=2:PortGrid-1
    pheromone(i,bestpath(i*2-1),bestpath(i*2))= ...
        (1-rou)*pheromone(i,bestpath(i*2-1),bestpath(i*2))+rou*cfit;
end
%% 循环寻找最优路径
for kk=1:100
    %% 路径搜索
    [path,pheromone]=searchpath(PopNumber,LevelGrid,PortGrid,...
        pheromone,HeightData,starty,starth,endy,endh); 
    %% 适应度值计算更新
    fitness=CacuFit(path);                               
    [newbestfitness,newbestindex]=min(fitness);     
    if newbestfitness<bestfitness
        bestfitness=newbestfitness;
        bestpath=path(newbestindex,:);
    end 
    BestFitness=[BestFitness;bestfitness];
    %% 更新信息素
    cfit=100/bestfitness;
    for i=2:PortGrid-1
        pheromone(i,bestpath(i*2-1),bestpath(i*2))=(1-rou)* ...
            pheromone(i,bestpath(i*2-1),bestpath(i*2))+rou*cfit;
    end
end
%% 最佳路径
for i=1:21
    a(i,1)=bestpath(i*2-1);
    a(i,2)=bestpath(i*2);
end
figure(1)
x=1:21;
y=1:21;
[x1,y1]=meshgrid(x,y);
mesh(x1,y1,HeightData)
axis([1,21,1,21,0,2000])
hold on
k=1:21;
plot3(k(1)',a(1,1)',a(1,2)'*200,'--o','LineWidth',2,...
                       'MarkerEdgeColor','k',...
                       'MarkerFaceColor','g',...
                       'MarkerSize',10)
plot3(k(21)',a(21,1)',a(21,2)'*200,'--o','LineWidth',2,...
                       'MarkerEdgeColor','k',...
                       'MarkerFaceColor','g',...
                       'MarkerSize',10)
                   text(k(1)',a(1,1)',a(1,2)'*200,'S');
text(k(21)',a(21,1)',a(21,2)'*200,'T');
xlabel('km','fontsize',12);
ylabel('km','fontsize',12);
zlabel('m','fontsize',12);
title('三维路径规划空间','fontsize',12)
set(gcf, 'Renderer', 'ZBuffer')
hold on
plot3(k',a(:,1)',a(:,2)'*200,'--o')
%% 适应度变化
figure(2)
plot(BestFitness)
title('最佳个体适应度变化趋势')
xlabel('迭代次数')
ylabel('适应度值')

image.gif

3.5 仿真结果

       采用蚁群算法进行三维路径规划,规划空间范围为20km×20 km的海域,根据1.2节的内容把规划空间抽象为21km×21km×21km的规划空间,其中,x轴,y轴方向每个节点的间距为1km,z轴方向每个节点间距为200m。路径起点在规划空间的序号为[1 10 4], 终点在规划空间的序号为[21 4 5]。算法的基本设置为种群规模为20,算法迭代为400次,路径规划结果和最优个体适应度变化如图6和图7所示。

image.gifimage.gif

4 总结

       以蚁群算法为代表的群智能已成为当今分布式人工智能研究的一个热点,许多源于蜂群和蚁群模型设计的算法已越来越多地被应用于企业的运转模式的研究。美国五角大楼正在资助关于群智能系统的研究工作——群体战略(swarm strategy),它的一个实战用途是通过运用成群的空中无人驾驶飞行器和地面车辆来转移敌人的注意力,让自己的军队在敌人后方不被察觉地安全活动。英国电信公司和美国世界通信公司以电子蚂蚁为基础,对新的电信网络管理方法进行了试验。群智能还被应用于工厂生产计划的制订和运输部门的后勤管理。美国太平洋西南航空公司采用了一种直接源于蚂蚁行为研究成果的运输管理软件,结果每年至少节约1000万美元的费用开支。英国联合利华公司率先利用群智能技术改善其一家牙膏厂的运转情况。美国通用汽车公司、法国液气公司、荷兰公路交通部和美国一些移民事务机构也都采用这种技术来改善其运转。

5.完整代码

基于蚁群算法的三维路径规划(matlab实现)

相关文章
|
1月前
|
算法 数据可视化 新制造
Threejs路径规划_基于A*算法案例完整版
这篇文章详细介绍了如何在Three.js中完整实现基于A*算法的路径规划案例,包括网格构建、路径寻找算法的实现以及路径可视化展示等方面的内容。
59 0
Threejs路径规划_基于A*算法案例完整版
|
1月前
|
存储 算法 机器人
Threejs路径规划_基于A*算法案例V2
这篇文章详细介绍了如何在Three.js中使用A*算法进行高效的路径规划,并通过三维物理电路的实例演示了路径计算和优化的过程。
58 0
|
2月前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
3月前
|
自然语言处理 算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
58 0
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
|
4月前
|
算法
基于kalman滤波的UAV三维轨迹跟踪算法matlab仿真
本文介绍了一种使用卡尔曼滤波(Kalman Filter)对无人飞行器(UAV)在三维空间中的运动轨迹进行预测和估计的方法。该方法通过状态预测和观测更新两个关键步骤,实时估计UAV的位置和速度,进而生成三维轨迹。在MATLAB 2022a环境下验证了算法的有效性(参见附图)。核心程序实现了状态估计和误差协方差矩阵的更新,并通过调整参数优化滤波效果。该算法有助于提高轨迹跟踪精度和稳定性,适用于多种应用场景,例如航拍和物流运输等领域。
220 12
|
3月前
|
算法 定位技术
路径规划算法 - 求解最短路径 - A*(A-Star)算法
路径规划算法 - 求解最短路径 - A*(A-Star)算法
72 0
|
3月前
|
算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
66 0
|
5月前
|
Python
求解带有限重的三维装箱问题——启发式深度优先搜索算法
求解带有限重的三维装箱问题——启发式深度优先搜索算法
100 4
|
4月前
|
存储 传感器 算法
基于ACO蚁群优化算法的WSN网络路由优化matlab仿真
摘要(Markdown格式): - 📈 ACO算法应用于WSN路由优化,MATLAB2022a中实现,动态显示迭代过程,输出最短路径。 - 🐜 算法模拟蚂蚁寻找食物,信息素更新与蚂蚁选择策略确定路径。信息素增量Δτ += α*τ*η,节点吸引力P ∝ τ / d^α。 - 🔁 算法流程:初始化→蚂蚁路径选择→信息素更新→判断结束条件→输出最优路由。优化WSN能量消耗,降低传输成本。
|
5月前
|
算法 JavaScript 决策智能
基于禁忌搜索算法的TSP路径规划matlab仿真
**摘要:** 使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。