基于多层编码遗传算法的车间调度

简介: 遗传算法具有较强的问题求解能力,能够解决非线性优化问题。遗传算法中的每个染色体表示问题中的一个潜在最优解,对于简单的问题来说,染色体可以方便地表达问题的潜在解,然而,对于较为复杂的优化问题,一个染色体难以准确表达问题的解。多层编码遗传算法把个体编码分为多层,每层编码均表示不同的含义,多层编码共同完整表达了问题的解,从而用一个染色体准确表达出了复杂问题的解。多层编码遗传算法扩展了遗传算法的使用领域,使得遗传算法可以方便用于复杂问题的求解。

         以下内容大部分来源于《MATLAB智能算法30个案例分析》,仅为学习交流所用。

1 理论基础

       遗传算法具有较强的问题求解能力,能够解决非线性优化问题。遗传算法中的每个染色体表示问题中的一个潜在最优解,对于简单的问题来说,染色体可以方便地表达问题的潜在解,然而,对于较为复杂的优化问题,一个染色体难以准确表达问题的解。多层编码遗传算法把个体编码分为多层,每层编码均表示不同的含义,多层编码共同完整表达了问题的解,从而用一个染色体准确表达出了复杂问题的解。多层编码遗传算法扩展了遗传算法的使用领域,使得遗传算法可以方便用于复杂问题的求解。

2 案例背景

2.1 问题描述

       车间调度是指根据产品制造的合理需求分配加工车间顺序,从而达到合理利用产品制造资源、提高企业经济效益的目的。车间调度问题从数学上可以描述为有n个待加工的零件要在m台机器上加工,车间调度的数学模型如下:

image.gif

2.2 模型建立

       基于多层编码遗传算法的车间调度算法流程如图11-1所示。其中,种群初始化模块初始化种群构成问题的初始解集;适应度值计算模块计算染色体的适应度值;选择操作采用轮盘赌法选择优秀个体;交叉操作采用整数交叉法得到优秀个体;变异操作采用整数变异法得到优秀个体。

image.gif

2.3 算法实现

1.个体编码

image.gifimage.gif

image.gif

5.变异操作

       种群通过变异操作获得新的个体,从而推动整个种群向前进化。变异算子首先从种群中随机选取变异个体,然后选择变异位置posl和pos2,最后把个体中pos1和pos2位的加工工序以及对应的加工机器序号对换,如下所示,交叉位置为2和4。

image.gif

3 MATLAB程序实现

       根据多层编码遗传算法原理,在MATLAB中编程实现基于多层编码遗传算法的车间调度算法,算法全部代码如下。

3.1 主函数

       主函数首先进行个体初始化,然后采用选择、交叉和变异操作搜索最佳个体,得到最优的车间调度方法,主要代码如下:

%% 清空环境
clc;clear
%% 下载数据
load scheduleData Jm T JmNumber
%工序 时间
%% 基本参数
NIND=40;        %个体数目
MAXGEN=50;      %最大遗传代数
GGAP=0.9;       %代沟
XOVR=0.8;       %交叉率
MUTR=0.6;       %变异率
gen=0;          %代计数器
%PNumber 工件个数 MNumber  工序个数
[PNumber MNumber]=size(Jm);  
trace=zeros(2, MAXGEN);      %寻优结果的初始值
WNumber=PNumber*MNumber;     %工序总个数
%% 初始化
Number=zeros(1,PNumber);     % PNumber 工件个数
for i=1:PNumber
    Number(i)=MNumber;         %MNumber工序个数
end
% 代码2层,第一层工序,第二层机器
Chrom=zeros(NIND,2*WNumber);
for j=1:NIND
    WPNumberTemp=Number;
    for i=1:WNumber
        %随机产成工序
        val=unidrnd(PNumber);
        while WPNumberTemp(val)==0
            val=unidrnd(PNumber);
        end
        %第一层代码表示工序
        Chrom(j,i)= val;
        WPNumberTemp(val)=WPNumberTemp(val)-1;
        %第2层代码表示机器
        Temp=Jm{val,MNumber-WPNumberTemp(val)};
        SizeTemp=length(Temp);
        %随机产成工序机器
        Chrom(j,i+WNumber)= unidrnd(SizeTemp);
    end
end
%计算目标函数值
[PVal ObjV P S]=cal(Chrom,JmNumber,T,Jm);  
%% 循环寻找
while gen<MAXGEN
    %分配适应度值
    FitnV=ranking(ObjV);  
    %选择操作
    SelCh=select('rws', Chrom, FitnV, GGAP);       
    %交叉操作
    SelCh=across(SelCh,XOVR,Jm,T);          
    %变异操作
    SelCh=aberranceJm(SelCh,MUTR,Jm,T);            
    %计算目标适应度值
    [PVal ObjVSel P S]=cal(SelCh,JmNumber,T,Jm);   
    %重新插入新种群
    [Chrom ObjV] =reins(Chrom, SelCh,1, 1, ObjV, ObjVSel);       
    %代计数器增加
    gen=gen+1;       
    %保存最优值
    trace(1, gen)=min(ObjV);       
    trace(2, gen)=mean(ObjV);  
    % 记录最佳值
    if gen==1
        Val1=PVal;
        Val2=P;
        MinVal=min(ObjV);%最小时间
        STemp=S;
    end
    %记录 最小的工序
    if MinVal> trace(1,gen)
        Val1=PVal;
        Val2=P;
        MinVal=trace(1,gen);
        STemp=S;
    end
end
% 当前最佳值
PVal=Val1; %工序时间
P=Val2;  %工序 
S=STemp; %调度基因含机器基因
%% 描绘解的变化
figure(1)
plot(trace(1,:));
hold on;
plot(trace(2,:),'-.');grid;
legend('解的变化','种群均值的变化');
%% 显示最优解
figure(2);
MP=S(1,PNumber*MNumber+1:PNumber*MNumber*2);
for i=1:WNumber  
    val= P(1,i);
    a=(mod(val,100)); %工序
    b=((val-a)/100); %工件
    Temp=Jm{b,a};
    mText=Temp(MP(1,i));
    x1=PVal(1,i);
    x2=PVal(2,i);
    y1=mText-1;
    y2=mText;
    PlotRec(x1,x2,mText);
    PlotRec(PVal(1,i),PVal(2,i),mText);
    hold on;
    fill([x1,x2,x2,x1],[y1,y1,y2,y2],[1-1/b,1/b,b/PNumber]);
    text((x1+x2)/2,mText-0.25,num2str(P(i)));
end

image.gif

3.2 仿真结果

       采用多层编码遗传算法求解车间调度问题,共有6个工件,在10台机器上加工,每个工件都要经过6道加工工序,每个工序可选择机器序号如表11-1所列。每道工序的加工时间如表11-2所列。

image.gif

image.gif

       算法的基本参数为:种群数目为40,最大迭代次数为50,交叉概率为0.8,变异概率为0.6,算法搜索得到的全部工件完成的最短时间为47s,算法搜索过程如图11-2所示。

image.gif

image.gif

4 素例扩展

4.1 模糊目标

       在实际的车间调度问题中,工件的加工时间往往需要在客户要求的时间窗口内。因此,对工件加工完成时间进行改进,采用了遵循顾客提货期要求的模糊提交时间。对于工件pi的交货期,梯形模糊数如图11-4所示。模糊分布函数为

image.gif

image.gif


相关文章
|
1月前
|
算法 调度 UED
探索操作系统的心脏:调度算法的奥秘与影响
【10月更文挑战第9天】 本文深入探讨了操作系统中至关重要的组件——调度算法,它如同人体的心脏,维持着系统资源的有序流动和任务的高效执行。我们将揭开调度算法的神秘面纱,从基本概念到实际应用,全面剖析其在操作系统中的核心地位,以及如何通过优化调度算法来提升系统性能。
|
14天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
17天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
52 4
|
18天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
23天前
|
算法 大数据 Linux
深入理解操作系统之进程调度算法
【10月更文挑战第24天】本文旨在通过浅显易懂的语言,带领读者深入了解操作系统中的进程调度算法。我们将从进程的基本概念出发,逐步解析进程调度的目的、重要性以及常见的几种调度算法。文章将通过比喻和实例,使复杂的技术内容变得生动有趣,帮助读者建立对操作系统进程调度机制的清晰认识。最后,我们还将探讨这些调度算法在现代操作系统中的应用和发展趋势。
|
1月前
|
算法 调度 UED
深入理解操作系统的进程调度算法
【10月更文挑战第7天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。它不仅影响系统的性能和用户体验,还直接关系到资源的合理分配。本文将通过浅显易懂的语言和生动的比喻,带你一探进程调度的秘密花园,从最简单的先来先服务到复杂的多级反馈队列,我们将一起见证算法如何在微观世界里编织宏观世界的和谐乐章。
|
1月前
|
存储 算法 固态存储
IO调度算法
【10月更文挑战第5天】IO调度算法
38 3
|
1月前
|
存储 算法 固态存储
IO调度算法
【10月更文挑战第5天】IO调度算法
42 2
下一篇
无影云桌面