基本粒子群算法及惯性权重分析

简介: 粒子群算法(particle swarm optimization,PSO)是计算智能领域,除了蚁群算法、鱼群算法之外的一种群体智能的优化算法。该算法最早由Kennedy和Eberhart在1995年提出的。PSO算法源于对鸟类捕食行为的研究,鸟类捕食时,找到食物最简单有效的策略就是搜寻当前距离食物最近的鸟的周围区域。PSO算法是从这种生物种群行为特征中得到启发并用于求解优化问题的,算法中每个粒子都代表问题的一个潜在解,每个粒子对应一个由适应度函数决定的适应度值。粒子的速度决定了粒子移动的方向和距离,速度随自身及其他粒子的移动经验进行动态调整,从而实现个体在可解空间中的寻优。

 1 理论基础

       粒子群算法(particle swarm optimization,PSO)是计算智能领域,除了蚁群算法、鱼群算法之外的一种群体智能的优化算法。该算法最早由Kennedy和Eberhart在1995年提出的。PSO算法源于对鸟类捕食行为的研究,鸟类捕食时,找到食物最简单有效的策略就是搜寻当前距离食物最近的鸟的周围区域。PSO算法是从这种生物种群行为特征中得到启发并用于求解优化问题的,算法中每个粒子都代表问题的一个潜在解,每个粒子对应一个由适应度函数决定的适应度值。粒子的速度决定了粒子移动的方向和距离,速度随自身及其他粒子的移动经验进行动态调整,从而实现个体在可解空间中的寻优。

       PSO算法首先在可行解空间中初始化一群粒子,每个粒子都代表极值优化问题的一个潜在最优解,用位置、速度和适应度值三项指标表示该粒子特征,适应度值由适应度函数计算得到,其值的好坏表示粒子的优劣。粒子在解空间中运动,通过跟踪个体极值Pbest和群体极值Gbest更新个体位置。个体极值Pbest是指个体所经历位置中计算得到的适应度值最优位置,群体极值Gbest是指种群中的所有粒子搜索到的适应度最优位置。粒子每更新一次位置,就计算一次适应度值,并且通过比较新粒子的适应度值和个体极值、群体极值的适应度值更新个体极值Pbest和群体极值Gbest位置。

image.gif

2 案例背景

2.1 问题描述

       本案例寻优的非线性函数为

image.gif

       matlab绘图代码和图像如下:

[x,y]=meshgrid(-1.2:0.01:1.2);
z=sin( sqrt(x.^2+y.^2) )./sqrt(x.^2+y.^2)+exp((cos(2*pi*x)+cos(2*pi*y))/2)-2.71289;
mesh(x,y,z)

image.gif

image.gif

       从函数图形可以看出,该函数有很多局部极大值点,而极限位置为(0,0),在(0,0)附近取得极大值。

2.2 解题思路及步骤

基于PSO算法的函数极值寻优算法流程图如图2所示。

image.gif

       其中,粒子和速度初始化随机初始化粒子速度和粒子位置;根据式(13-3)计算粒子适应度值;根据初始粒子适应度值确定个体极值和群体极值;根据式(13-1)与式(13-2)更新粒子速度和位置;根据新种群中粒子适应度值更新个体极值和群体极值。

       本案例中,适应度函数为函数表达式,适应度值为函数值。种群粒子数为20,每个粒子的维数为2,算法迭代进化次数为300。

3 MATLAB程序实现

       根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。

%% 清空环境
clc
clear
%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;
maxgen=300;   % 进化次数  
sizepop=20;   %种群规模
Vmax=0.5;
Vmin=-0.5;
popmax=2;
popmin=-2;
%% 产生初始粒子和速度
for i=1:sizepop
    %随机产生一个种群
    pop(i,:)=2*rands(1,2);    %初始种群
    V(i,:)=0.5*rands(1,2);  %初始化速度
    %计算适应度
    fitness(i)=fun(pop(i,:));   %染色体的适应度
end
%% 个体极值和群体极值
[bestfitness bestindex]=max(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值
%% 迭代寻优
for i=1:maxgen
    for j=1:sizepop
        %速度更新
        V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
        V(j,find(V(j,:)>Vmax))=Vmax;
        V(j,find(V(j,:)<Vmin))=Vmin;
        %种群更新
        pop(j,:)=pop(j,:)+V(j,:);
        pop(j,find(pop(j,:)>popmax))=popmax;
        pop(j,find(pop(j,:)<popmin))=popmin;
        %适应度值
        fitness(j)=fun(pop(j,:)); 
    end
    for j=1:sizepop
        %个体最优更新
        if fitness(j) > fitnessgbest(j)
            gbest(j,:) = pop(j,:);
            fitnessgbest(j) = fitness(j);
        end
        %群体最优更新
        if fitness(j) > fitnesszbest
            zbest = pop(j,:);
            fitnesszbest = fitness(j);
        end
    end 
    yy(i)=fitnesszbest;    
end
%% 结果分析
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);

image.gif

       最优个体适应度值变化如图3所示。

image.gif

       最终得到的最优个体适应度值为1.0053,对应的粒子位置为(0.0015,-0.0008),PSO 算法寻优得到最优值接近函数实际最优值,说明PSO算法具有较强的函数极值寻优能力。

4 延伸阅读

4.1 惯性权重的选择

       惯性权重w体现的是粒子继承先前的速度的能力,Shi.Y最先将惯性权重引入PSO算法中,并分析指出一个较大的惯性权值有利于全局搜索,而一个较小的惯性权值则更利于局部搜索。为了更好地平衡算法的全局搜索与局部搜索能力,Shi.Y提出了线性递减惯性权重(linear decreasing inertia weight,LDIW),即

image.gif

image.gif

4.2 w变化的算法性能分析

       算法参数设置:种群规模20,进化300代。每个实验设置运行100次,将100次的平均值作为最终结果。在上述的参数设置下,运用5种w取值方法对函数进行求解,并比较所得解的平均值、失

效次数和接近最优值的次数,来分析其收敛精度、收敛速度等性能。每种w的算法进化曲线如图13-5所示。

image.gif

       本案例中,将距离最优解1.0054误差为0.01的解视为接近最优解,将0.8477及更小的解视为陷入局部最优的解。

       由图13-5和表13-1可以看出,惯性权重w不变的粒子群优化算法虽然具有较快的收敛速度,但其后期容易陷入局部最优,求解精度低;而几种w动态变化的算法虽然在算法初期收敛稍慢,但在后期局部搜索能力强,利于算法跳出局部最优而求得最优解,提高了算法的求解精度。

       式(13-5)中w动态变化方法,前期w变化较慢,取值较大,维持了算法的全局搜索能力;后期w变化较快,极大地提高了算法的局部寻优能力,从而取得了很好的求解效果。

image.gif


相关文章
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
380 3
|
2月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
231 3
|
5月前
|
机器学习/深度学习 边缘计算 算法
NOMA和OFDMA优化算法分析
NOMA和OFDMA优化算法分析
311 127
|
7月前
|
数据采集 机器学习/深度学习 算法
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
460 4
|
2月前
|
存储 边缘计算 算法
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
|
3月前
|
机器学习/深度学习 算法 5G
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
166 0
|
4月前
|
编解码 算法 5G
MIMO雷达空间谱估计中Capon算法与MUSIC算法的对比分析及实现
MIMO雷达空间谱估计中Capon算法与MUSIC算法的对比分析及实现
361 2
|
4月前
|
人工智能 自然语言处理 算法
2025 年 7 月境内深度合成服务算法备案情况分析报告
2025年7月,中央网信办发布第十二批深度合成算法备案信息,全国389款产品通过备案,服务提供者占比超七成。截至7月14日,全国累计备案达3834款,覆盖文本、图像、音视频等多模态场景,广泛应用于生活服务、医疗、金融等领域。广东以135款居首,数字人、AI客服等C端应用主导,民营企业成主力,国企聚焦公共服务。随着AI政策推动,备案已成为AI产品合规上线关键环节。
|
7月前
|
存储 监控 算法
员工行为监控软件中的 Go 语言哈希表算法:理论、实现与分析
当代企业管理体系中,员工行为监控软件已逐步成为维护企业信息安全、提升工作效能的关键工具。这类软件能够实时记录员工操作行为,为企业管理者提供数据驱动的决策依据。其核心支撑技术在于数据结构与算法的精妙运用。本文聚焦于 Go 语言中的哈希表算法,深入探究其在员工行为监控软件中的应用逻辑与实现机制。
191 14
|
8月前
|
自然语言处理 算法 安全
境内深度合成服务算法备案通过名单分析报告
本报告基于《境内深度合成服务算法备案通过名单》,分析了2023年6月至2025年3月公布的10批备案数据,涵盖属地分布、行业应用及产品形式等多个维度。报告显示,深度合成算法主要集中于经济发达地区,如北京、广东、上海等地,涉及教育、医疗、金融、娱乐等多行业。未来趋势显示技术将向多模态融合、行业定制化和安全合规方向发展。建议企业加强技术研发、拓展应用场景、关注政策动态,以在深度合成领域抢占先机。此分析旨在为企业提供参考,助力把握技术发展机遇。
境内深度合成服务算法备案通过名单分析报告