namespace cv
{
class DataReader
{
public:
explicit DataReader(int _flags):flags(_flags)
{
}
void read(std::string filename,const char*key,Mat&res)
{
try
{
FileStorage fs(filename,FileStorage::Mode::FORMAT_XML|FileStorage::Mode::READ);
fs[key]>>res;
fs.release();
}
catch(Exception e)
{
std::cerr<<e.msg<<std::endl;
}
}
private:
int flags;
};
块链技术采用了分布式存储技术,将数据分散存储在网络上的各个节点上。这种存储方式不仅可以增加区块链的安全性,还可以增加区块链的可扩展性和容错性
毫无疑问,区块链技术有可能彻底改变人们做生意的方式。分布式账本系统提供了一种安全透明的方式来进行交易和跟踪数据。
然而,区块链技术的未来仍不明朗。该技术仍处于早期阶段,需要解决许多挑战。例如,为了大规模使用区块链,需要解决可扩展性问题。
To execute the code I’ll discuss in this post,you will need access to an NVIDIA GPU.If you don’t have one yet,I recommend grabbing a Titan X if you have a spare wad of cash lying around,or a cute little Jetson TX2 which you can get for$300 if you’re a student and for around$600 otherwise.Whatever your device,it will require a compute capability of at least 3.0 to run cuDNN kernels.You’ll also need the cuDNN library,which you can download here.
卷积函数:
def conv2d(input,filter,strides,padding,use_cudnn_on_gpu=True,data_format="NHWC",name=None):
data_format:string变量,值有"NHWC","NCHW"。
默认为"NHWC"表示[batch,height,width,channels]
input:要求为一个4-D Tensor,维度顺序与data_format一样,
shape为[batch,in_height,in_width,in_channels]
类型为float32或half
filter:要求为一个4-D Tensor,维度顺序与data_format一样,
shape为[filter_height,filter_width,in_channels,out_channels]
类型与input一样【相当于卷积核】
strides:A list of`ints`或1-D tensor of length 4。对应于input中每一维的滑动窗口
padding:string类型,变量值可取"SAME","VALID",表示不同的卷积方式
SAME:采用填充的方式
VALID:采用丢弃的方式