✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
基于支持向量机(Support Vector Machines,SVM)的数据回归预可以使用libsvm库进行实现。以下是一种基本的步骤:
- 数据准备:将回归预测的数据集划分为训练集和测试集,并对数据进行预处理(如归一化、标准化等)。
- 特征提取:根据具体问题,选择合适的特征提取方法来将数据转化为特征向量。常用的特征提取方法包括统计特征、频域特征、时域特征等。
- 标签准备:将待预测的目标值作为标签,并与特征向量对应起来。
- SVM参数选择:选择合适的SVM回归参数,包括核函数类型、正则化参数C、核函数参数等。可以使用交叉验证等方法来选择最优的参数组合。
- 模型训练:使用训练集数据和标签,利用libsvm库中提供的接口进行模型训练。libsvm支持多种核函数(如线性核、多项式核、径向基函数核等)。
- 模型预测:使用训练好的SVM模型对测试集数据进行预测。将测试集数据转化为特征向量,并利用模型计算出相应的预测值。
- 模型评估:通过比较预测值与真实值之间的差异,使用适当的指标(如均方根误差、平均绝对误差等)来评估模型的性能。
- 参数调优:根据模型评估结果,可以调整SVM模型中的参数,重新进行训练和预测,以提高预测精度。
⛄ 部分代码
%% 清空环境变量warning off % 关闭报警信息close all % 关闭开启的图窗clear % 清空变量clc % 清空命令行%% 导入数据res = xlsread('数据集.xlsx');%% 划分训练集和测试集temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';T_train = res(temp(1: 80), 8)';M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';T_test = res(temp(81: end), 8)';N = size(P_test, 2);%% 数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);t_test = mapminmax('apply', T_test, ps_output);%% 转置以适应模型p_train = p_train'; p_test = p_test';t_train = t_train'; t_test = t_test';%% 创建模型c = 4.0; % 惩罚因子g = 0.8; % 径向基函数参数cmd = [' -t 2',' -c ',num2str(c),' -g ',num2str(g),' -s 3 -p 0.01'];model = svmtrain(t_train, p_train, cmd);%% 仿真预测[t_sim1, error_1] = svmpredict(t_train, p_train, model);[t_sim2, error_2] = svmpredict(t_test , p_test , model);%% 数据反归一化T_sim1 = mapminmax('reverse', t_sim1, ps_output);T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%% 绘图figureplot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};title(string)xlim([1, M])gridfigureplot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};title(string)xlim([1, N])grid%% 相关指标计算% R2R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;R2 = 1 - norm(T_test - T_sim2')^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])disp(['测试集数据的R2为:', num2str(R2)])% MAEmae1 = sum(abs(T_sim1' - T_train)) ./ M ;mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])disp(['测试集数据的MAE为:', num2str(mae2)])% MBEmbe1 = sum(T_sim1' - T_train) ./ M ;mbe2 = sum(T_sim2' - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])disp(['测试集数据的MBE为:', num2str(mbe2)])%% 绘制散点图sz = 25;c = 'b';figurescatter(T_train, T_sim1, sz, c)hold onplot(xlim, ylim, '--k')xlabel('训练集真实值');ylabel('训练集预测值');xlim([min(T_train) max(T_train)])ylim([min(T_sim1) max(T_sim1)])title('训练集预测值 vs. 训练集真实值')figurescatter(T_test, T_sim2, sz, c)hold onplot(xlim, ylim, '--k')xlabel('测试集真实值');ylabel('测试集预测值');xlim([min(T_test) max(T_test)])ylim([min(T_sim2) max(T_sim2)])title('测试集预测值 vs. 测试集真实值')
⛄ 运行结果
⛄ 参考文献
[1] 周志聪,祁广云.基于支持向量机对稻米淀粉含量的回归预测研究[J].黑龙江八一农垦大学学报, 2014, 26(6):5.DOI:10.3969/j.issn.1002-2090.2014.06.021.
[2] 顾嘉运,刘晋飞,陈明.基于SVM的大样本数据回归预测改进算法[J].计算机工程, 2014.DOI:CNKI:SUN:JSJC.0.2014-01-034.