DH加密算法使用简介

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: RSA与DH算法的区别,Curve25519椭圆曲线算法的验签逻辑

RSA与DH算法

迪菲—赫尔曼密钥交换是使用和RSA相似的技术吗?

RSA

RSA可以用于加密和签名,用公钥和私钥可以对文件做验证。

但RSA无法解决前向加密的问题,如果RSA的私钥泄漏,之前的消息均可用私钥解密出来。

RSA可以做密钥传输,B使用A的密钥对中的公钥加密数据,只有B用它的私钥才能解开。但RSA的公钥也不能在公网中传递,依然会有被中间人攻击的可能。

DH

DH的使用双方均有一对密钥,如果一方的公钥和私钥泄漏,依然无法破解之前的数据。

DH算法本身不包含身份认证机制,如果AB在交换公钥时被截获,C插入一对DH密钥,分别与AB通信,则可以截取信息。

Curve25519椭圆曲线算法

从 Ed25519 转换为 Curve25519 公钥

Curve25519是一种高水平的DH函数,提供128位的安全心,是最快的ECC曲线。

使用一个32字节的私钥,再根据私钥计算出32字节公钥。

B用户的公钥+A用户的私钥、A用户的公钥+B用户的私钥可以计算出一个32字节的共享密钥提供给两个用户使用,做AES加密。

Ed25519加密解密很快,生成时间短而且安全性更高,rsa则加密解密稍慢,生成时间长,安全性没有ed25519高,只是rsa基本都是默认,所以用的人更多,但是建议转换为ed25519,网站软件现在基本都支持了.

验签逻辑

curve25519_sign

  1. 将 Curve25519的私钥 转换为 Ed25519的公钥
  2. 使用 Curve25519的私钥 和 Ed25519的公钥 对数据进行签名。
  3. 返回加密结果

curve25519_verify

参数:加密数据,Curve25519公钥,原始数据

  1. 将 Cureve25519的公钥 转换成 Ed25519的公钥 。
  2. 使用 Ed25519的公钥 计算出 签名数据,将签名数据从加密数据中提取出来。
  3. 再将原始数据与签名数据拼接生成 验证体数据A 。
  4. 使用 Ed25519的公钥 ,验证体数据A,原始数据,生成 验证体数据B。
  5. 验证解密结果是否成功
void curve25519_keygen(unsigned char* curve25519_pubkey_out,
                       const unsigned char* curve25519_privkey_in)
{
  ge_p3 ed; /* Ed25519 pubkey point */
  fe ed_y, ed_y_plus_one, one_minus_ed_y, inv_one_minus_ed_y;
  fe mont_x;

  /* Perform a fixed-base multiplication of the Edwards base point,
     (which is efficient due to precalculated tables), then convert
     to the Curve25519 montgomery-format public key.  In particular,
     convert Curve25519's "montgomery" x-coordinate into an Ed25519
     "edwards" y-coordinate:

     mont_x = (ed_y + 1) / (1 - ed_y)

     with projective coordinates:

     mont_x = (ed_y + ed_z) / (ed_z - ed_y)

     NOTE: ed_y=1 is converted to mont_x=0 since fe_invert is mod-exp
  */

  ge_scalarmult_base(&ed, curve25519_privkey_in);
  fe_add(ed_y_plus_one, ed.Y, ed.Z);
  fe_sub(one_minus_ed_y, ed.Z, ed.Y);  
  fe_invert(inv_one_minus_ed_y, one_minus_ed_y);
  fe_mul(mont_x, ed_y_plus_one, inv_one_minus_ed_y);
  fe_tobytes(curve25519_pubkey_out, mont_x);
}

int curve25519_sign(unsigned char* signature_out,
                    const unsigned char* curve25519_privkey,
                    const unsigned char* msg, const unsigned long msg_len,
                    const unsigned char* random)
{
  ge_p3 ed_pubkey_point; /* Ed25519 pubkey point */
  unsigned char ed_pubkey[32]; /* Ed25519 encoded pubkey */
  unsigned char *sigbuf; /* working buffer */
  unsigned char sign_bit = 0;

  if ((sigbuf = malloc(msg_len + 128)) == 0) {
    memset(signature_out, 0, 64);
    return -1;
  }

  /* Convert the Curve25519 privkey to an Ed25519 public key */
  ge_scalarmult_base(&ed_pubkey_point, curve25519_privkey);
  ge_p3_tobytes(ed_pubkey, &ed_pubkey_point);
  sign_bit = ed_pubkey[31] & 0x80;

  /* Perform an Ed25519 signature with explicit private key */
  crypto_sign_modified(sigbuf, msg, msg_len, curve25519_privkey,
                       ed_pubkey, random);
  memmove(signature_out, sigbuf, 64);

  /* Encode the sign bit into signature (in unused high bit of S) */
   signature_out[63] &= 0x7F; /* bit should be zero already, but just in case */
   signature_out[63] |= sign_bit;

   free(sigbuf);
   return 0;
}

int curve25519_verify(const unsigned char* signature,
                      const unsigned char* curve25519_pubkey,
                      const unsigned char* msg, const unsigned long msg_len)
{
  fe mont_x, mont_x_minus_one, mont_x_plus_one, inv_mont_x_plus_one;
  fe one;
  fe ed_y;
  unsigned char ed_pubkey[32];
  unsigned long long some_retval;
  unsigned char *verifybuf = NULL; /* working buffer */
  unsigned char *verifybuf2 = NULL; /* working buffer #2 */
  int result;

  if ((verifybuf = malloc(msg_len + 64)) == 0) {
    result = -1;
    goto err;
  }

  if ((verifybuf2 = malloc(msg_len + 64)) == 0) {
    result = -1;
    goto err;
  }

  /* Convert the Curve25519 public key into an Ed25519 public key.  In
     particular, convert Curve25519's "montgomery" x-coordinate into an
     Ed25519 "edwards" y-coordinate:

     ed_y = (mont_x - 1) / (mont_x + 1)

     NOTE: mont_x=-1 is converted to ed_y=0 since fe_invert is mod-exp

     Then move the sign bit into the pubkey from the signature.
  */
  fe_frombytes(mont_x, curve25519_pubkey);
  fe_1(one);
  fe_sub(mont_x_minus_one, mont_x, one);
  fe_add(mont_x_plus_one, mont_x, one);
  fe_invert(inv_mont_x_plus_one, mont_x_plus_one);
  fe_mul(ed_y, mont_x_minus_one, inv_mont_x_plus_one);
  fe_tobytes(ed_pubkey, ed_y);

  /* Copy the sign bit, and remove it from signature */
  ed_pubkey[31] &= 0x7F;  /* bit should be zero already, but just in case */
  ed_pubkey[31] |= (signature[63] & 0x80);
  memmove(verifybuf, signature, 64);
  verifybuf[63] &= 0x7F;

  memmove(verifybuf+64, msg, msg_len);

  /* Then perform a normal Ed25519 verification, return 0 on success */
  /* The below call has a strange API: */
  /* verifybuf = R || S || message */
  /* verifybuf2 = internal to next call gets a copy of verifybuf, S gets 
     replaced with pubkey for hashing, then the whole thing gets zeroized
     (if bad sig), or contains a copy of msg (good sig) */
  result = crypto_sign_open(verifybuf2, &some_retval, verifybuf, 64 + msg_len, ed_pubkey);

  err:

  if (verifybuf != NULL) {
    free(verifybuf);
  }

  if (verifybuf2 != NULL) {
    free(verifybuf2);
  }

  return result;
}
目录
相关文章
|
8月前
|
存储 算法 安全
【加密算法】AES对称加密算法简介
【加密算法】AES对称加密算法简介
|
8月前
|
机器学习/深度学习 算法 安全
【加密算法】RSA非对称加密算法简介
【加密算法】RSA非对称加密算法简介
|
8月前
|
机器学习/深度学习 算法 TensorFlow
机器学习算法简介:从线性回归到深度学习
【5月更文挑战第30天】本文概述了6种基本机器学习算法:线性回归、逻辑回归、决策树、支持向量机、随机森林和深度学习。通过Python示例代码展示了如何使用Scikit-learn、statsmodels、TensorFlow库进行实现。这些算法在不同场景下各有优势,如线性回归处理连续值,逻辑回归用于二分类,决策树适用于规则提取,支持向量机最大化类别间隔,随机森林集成多个决策树提升性能,而深度学习利用神经网络解决复杂模式识别问题。理解并选择合适算法对提升模型效果至关重要。
260 4
|
4月前
|
算法 Java 数据安全/隐私保护
国密加密算法简介
国密指国家密码局认定的国产密码算法,主要包括SM1、SM2、SM3、SM4等,并持续完善。SM1是对称加密算法,加密强度与AES相当,需加密芯片支持;SM2是非对称加密,基于ECC算法,签名和密钥生成速度优于RSA;SM3为杂凑算法,安全性高于MD5;SM4为对称加密算法,用于无线局域网标准。本文提供使用Java和SpringBoot实现SM2和SM4加密的示例代码及依赖配置。更多国密算法标准可参考国家密码局官网。
366 1
|
3月前
|
存储 算法 安全
ArrayList简介及使用全方位手把手教学(带源码),用ArrayList实现洗牌算法,3个人轮流拿牌(带全部源码)
文章全面介绍了Java中ArrayList的使用方法,包括其构造方法、常见操作、遍历方式、扩容机制,并展示了如何使用ArrayList实现洗牌算法的实例。
26 0
|
5月前
|
算法 安全 网络安全
Diffie-Hellman (DH) 算法的工作原理
【8月更文挑战第23天】
623 0
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
**RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。 **CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。 **Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。 **BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。
174 9
|
6月前
|
算法
Raid5数据恢复—Raid5算法简介&raid5磁盘阵列数据恢复案例
Raid5算法也被称为“异或运算”。异或是一个数学运算符,它应用于逻辑运算。异或的数学符号为“⊕”,计算机符号为“xor”。异或的运算法则为:a⊕b = (¬a ∧ b) ∨ (a ∧¬b)。如果a、b两个值不相同,则异或结果为1。如果a、b两个值相同,异或结果为0。 异或也叫半加运算,其运算法则相当于不带进位的二进制加法。二进制下用1表示真,0表示假。异或的运算法则为:0⊕0=0,1⊕0=1,0⊕1=1,1⊕1=0(同为0,异为1),这些法则与加法是相同的,只是不带进位。 异或略称为XOR、EOR、EX-OR,程序中有三种演算子:XOR、xor、⊕。使用方法如下z = x ⊕ y z
Raid5数据恢复—Raid5算法简介&raid5磁盘阵列数据恢复案例
|
5月前
|
算法
【算法】贪心算法简介
【算法】贪心算法简介
113 0
|
5月前
|
算法
【算法】递归、搜索与回溯——简介
【算法】递归、搜索与回溯——简介

热门文章

最新文章