K8s日志组件-Loki是如何存储数据的?

简介: 日志记录本质上是一个事件。大多数语言、应用程序框架或库都支持日志,表现形式可以是字符串这样原始的非结构化数据,也可以是JSON等半结构化数据。开发者可以通过日志来分析应用的执行状况,报错信息,分析性能…… 正因为日志极其灵活,生成非常容易,没有一个统一的结构,所以它的体量也是最大的。

为什么需要loki

日志记录本质上是一个事件。大多数语言、应用程序框架或库都支持日志,表现形式可以是字符串这样原始的非结构化数据,也可以是JSON等半结构化数据。开发者可以通过日志来分析应用的执行状况,报错信息,分析性能…… 正因为日志极其灵活,生成非常容易,没有一个统一的结构,所以它的体量也是最大的。


对于单体应用,查看日志我们可以直接登上服务器,用head、tail、less、more等命令进行查看,也可以结合awk、sed、grep等文本处理工具进行简单的分析。但是分布式应用,面对部署在数十数百台机器的应用,亟需一个日志收集、处理、存储、查询的系统

为什么不是EFK?

开源社区最早流行的是Elastic体系的ELK。Logstash负责收集,ElasticSearch负责索引与存储,Kibana负责查询与展示。ElasticSearch支持全文索引可以进行全文搜索,而且支持DocValue可以用于结构化数据的聚合分析。再加上MetricBeats提供了监控指标的收集,APM提供的链路收集,Elastic俨然已是一个集Logging、Metrics、Trace的大一统技术体系。这主要是因为早期的Elastic野心很大,但是这也导致ElasticSearch并不专注在其中的一个领域。


1、使用全文索引受限于分词器,对于日志查询非常鸡肋(两个单词能搜索到,三个单词就搜索不到的现象也不少)。


2、而且索引阶段特别耗时,很多用户都无法忍受ElasticSearch索引不过来时抛出的EsReject。


3、另外,ElasticSearch除了用于全文搜索的倒排索引,还有store按行存储,在_source字段中存储JSON文档,docValue列式存储,对于不熟悉ElasticSearch的开发者来说,意味着存储体量翻了好几倍,ElasticSearch的高性能查询严重依赖于索引缓存,官方建议机器的内存得预留一半给操作系统进行文件缓存,这套吃内存的东西对普通的日志查询简直就是小题大做。


4、还有ElasticSearch在生产环境至少得部署三个节点,否则由于网络波动容易出现脑裂。


5、基于JVM的Logstash极其笨重,经常因为GC无响应导致日志延时,作为采集日志的agent有点喧宾夺主,为此Elastic专门用Go语言开发了轻量级的FileBeat日志采集工具。由FileBeat负责采集,Logstash负责解析处理。


目前K8s生态下以Fluentd和C语言编写的fluent-bit为主作为日志收集工具,Grafana开发的Loki负责存储。Loki去掉了全文索引,使用最原始的块存储,对时间和特定标签做索引,这和Metrics领域的Prometheus类似

Loki是如何存储数据的?

Loki是一个分布式日志聚合系统,它使用类似于Prometheus的标签查询语言来查询和过滤日志数据。Loki的数据存储方式与传统的日志存储方式不同,它使用了一种称为“无索引”的方式来存储数据。

在Loki中,日志数据被存储在称为“块”的文件中。每个块包含一定数量的日志条目,通常是几千到几万条。的大小可以配置,通常在几百MB到几GB之间。

Loki使用了一种称为“切片”的方式来组织块。每个切片包含一定数量的块,通常是几百到几千个。切片的大小也可以配置,通常在几GB到几十GB之间。

Loki使用一种称为“标签索引”的方式来查询和过滤日志数据。标签索引是一种基于标签的元数据存储方式它允许Loki快速地定位包含特定标签值的日志数据。

当Loki接收到新的日志数据时,它会数据写入一个新的块中。如果块已经达到了配置的大小限制,Loki会将块写入一个新的切片中。如果切片已经达到了配置的大小限制,Loki会将切片写入磁盘,并创建一个新的切片。

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
3月前
|
SQL 人工智能 监控
SLS Copilot 实践:基于 SLS 灵活构建 LLM 应用的数据基础设施
本文将分享我们在构建 SLS SQL Copilot 过程中的工程实践,展示如何基于阿里云 SLS 打造一套完整的 LLM 应用数据基础设施。
772 60
|
3月前
|
数据采集 运维 监控
不重启、不重写、不停机:SLS 软删除如何实现真正的“无感数据急救”?
SLS 全新推出的「软删除」功能,以接近索引查询的性能,解决了数据应急删除与脏数据治理的痛点。2 分钟掌握这一数据管理神器。
253 31
|
4月前
|
存储 缓存 Apache
StarRocks+Paimon 落地阿里日志采集:万亿级实时数据秒级查询
A+流量分析平台是阿里集团统一的全域流量数据分析平台,致力于通过埋点、采集、计算构建流量数据闭环,助力业务提升流量转化。面对万亿级日志数据带来的写入与查询挑战,平台采用Flink+Paimon+StarRocks技术方案,实现高吞吐写入与秒级查询,优化存储成本与扩展性,提升日志分析效率。
550 1
|
4月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL数据库的WAL日志与数据写入的过程
PostgreSQL中的WAL(预写日志)是保证数据完整性的关键技术。在数据修改前,系统会先将日志写入WAL,确保宕机时可通过日志恢复数据。它减少了磁盘I/O,提升了性能,并支持手动切换日志文件。WAL文件默认存储在pg_wal目录下,采用16进制命名规则。此外,PostgreSQL提供pg_waldump工具解析日志内容。
412 0
|
4月前
|
数据采集 运维 监控
|
6月前
|
存储 NoSQL MongoDB
Docker中安装MongoDB并配置数据、日志、配置文件持久化。
现在,你有了一个运行在Docker中的MongoDB,它拥有自己的小空间,对高楼大厦的崩塌视而不见(会话丢失和数据不持久化的问题)。这个MongoDB的数据、日志、配置文件都会妥妥地保存在你为它精心准备的地方,天旋地转,它也不会失去一丁点儿宝贵的记忆(即使在容器重启后)。
735 4
|
2月前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
296 1
|
2月前
|
弹性计算 监控 调度
ACK One 注册集群云端节点池升级:IDC 集群一键接入云端 GPU 算力,接入效率提升 80%
ACK One注册集群节点池实现“一键接入”,免去手动编写脚本与GPU驱动安装,支持自动扩缩容与多场景调度,大幅提升K8s集群管理效率。
261 89
|
7月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
ACK One 的多集群应用分发,可以最小成本地结合您已有的单集群 CD 系统,无需对原先应用资源 YAML 进行修改,即可快速构建成多集群的 CD 系统,并同时获得强大的多集群资源调度和分发的能力。
297 9

热门文章

最新文章

推荐镜像

更多