遗传算法(GA)优化后RBF神经网络优化分析(Matlab代码实现)

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 遗传算法(GA)优化后RBF神经网络优化分析(Matlab代码实现)

目录


1 遗传算法


2 RBF神经网络


3 Matlab代码实现


4 结果


1 遗传算法

遗传算法是一种基于生物进化原理的优化算法,常用于解决复杂的问题。它的工作原理基于模拟自然选择和遗传机制。


遗传算法的步骤如下:


1. 初始化种群:随机生成初始种群,每个个体都代表一个可能的解决方案。


2. 适应度评估:根据问题的特定评估函数,对每个个体进行评估,衡量其解决问题的效果。


3. 选择操作:根据适应度评估结果,选择一部分个体作为父代。


4. 交叉操作:通过交换父代个体的某些特征,生成新的子代个体。


5. 变异操作:对子代个体进行随机变异,以保持种群的多样性。


6. 替换操作:用子代替换部分父代,形成新的种群。


7. 重复执行步骤2到步骤6,直到满足终止条件(达到最大迭代次数、达到期望解或达到时间限制)。


通过迭代执行以上步骤,遗传算法能够逐渐搜索出更好的解决方案。它适用于各种优化问题,例如组合优化、参数优化、机器学习等。遗传算法具有全局搜索能力和对多个优化目标的适应性,但也具有计算复杂度高的缺点。因此,在应用遗传算法时需要根据具体问题权衡利弊。


2 RBF神经网络

RBF神将网络是一种三层神经网络,其包括输入层、隐层、输出层。从输入空间到隐层空间的变换是非线性的,而从隐层空间到输出层空间变换是线性的。流图如下:


6b274465128e2aa35c2acc6b23710732.png


RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。其中,隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想。


这样,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。


3 Matlab代码实现

GA.m

clear all
close all
G = 15;
Size = 30;
CodeL = 10;
for i = 1:3
    MinX(i) = 0.1*ones(1);
    MaxX(i) = 3*ones(1);
end
for i = 4:1:9
    MinX(i) = -3*ones(1);
    MaxX(i) = 3*ones(1);
end
for i = 10:1:12
    MinX(i) = -ones(1);
    MaxX(i) = ones(1);
end
E = round(rand(Size,12*CodeL));  %Initial Code!
BsJ = 0;
for kg = 1:1:G
    time(kg) = kg
    for s = 1:1:Size
        m = E(s,:);
        for j = 1:1:12
            y(j) = 0;
            mj = m((j-1)*CodeL + 1:1:j*CodeL);
            for i = 1:1:CodeL
                y(j) = y(j) + mj(i)*2^(i-1);
            end
            f(s,j) = (MaxX(j) - MinX(j))*y(j)/1023 + MinX(j);
        end
        % ************Step 1:Evaluate BestJ *******************
        p = f(s,:);
        [p,BsJ] = RBF(p,BsJ);
        BsJi(s) = BsJ;
    end
    [OderJi,IndexJi] = sort(BsJi);
    BestJ(kg) = OderJi(1);
    BJ = BestJ(kg);
    Ji = BsJi+1e-10;
    fi = 1./Ji;
    [Oderfi,Indexfi] = sort(fi);
    Bestfi = Oderfi(Size);
    BestS = E(Indexfi(Size),:);
    % ***************Step 2:Select and Reproduct Operation*********
    fi_sum = sum(fi);
    fi_Size = (Oderfi/fi_sum)*Size;
    fi_S = floor(fi_Size);
    kk = 1;
    for i = 1:1:Size
        for j = 1:1:fi_S(i)
            TempE(kk,:) = E(Indexfi(i),:);
            kk = kk + 1;
        end
    end
    % ****************Step 3:Crossover Operation*******************
    pc = 0.60;
    n = ceil(20*rand);
    for i = 1:2:(Size - 1)
        temp = rand;
        if pc>temp
            for j = n:1:20
                TempE(i,j) = E(i+1,j);
                TempE(i+1,j) = E(i,j);
            end
        end
    end
        TempE(Size,:) = BestS;
        E = TempE;
     %*****************Step 4:Mutation Operation*********************
     pm = 0.001 - [1:1:Size]*(0.001)/Size;
     for i = 1:1:Size
         for j = 1:1:12*CodeL
             temp = rand;
             if pm>temp
                 if TempE(i,j) == 0
                     TempE(i,j) = 1;
                 else
                     TempE(i,j) = 0;
                 end
             end
         end
     end
     %Guarantee TempE(Size,:) belong to the best individual
     TempE(Size,:) = BestS;
     E = TempE;
     %********************************************************************
 end
 Bestfi
 BestS
 fi
 Best_J = BestJ(G)
 figure(1);
 plot(time,BestJ);
 xlabel('Times');ylabel('BestJ');
 save pfile p;


RBF.m

function [p,BsJ] = RBF(p,BsJ)
ts = 0.001;
alfa = 0.05;
xite = 0.85;
x = [0,0]';
b = [p(1);p(2);p(3)];
c = [p(4) p(5) p(6);
    p(7) p(8) p(9)];
w = [p(10);p(11);p(12)];
w_1 = w;w_2 = w_1;
c_1 = c;c_2 = c_1;
b_1 = b;b_2 = b_1;
y_1 = 0;
for k = 1:500
    timef(k) = k*ts;
    u(k) = sin(5*2*pi*k*ts);
    y(k) = u(k)^3 + y_1/(1 + y_1^2);
    x(1) = u(k);
    x(2) = y(k);
    for j = 1:1:3
        h(j) = exp(-norm(x - c(:,j))^2/(2*b(j)*b(j)));
    end
    ym(k) = w_1'*h';
    e(k) = y(k) - ym(k);
    d_w = 0*w;d_b = 0*b;d_c = 0*c;
    for j = 1:1:3
        d_w(j) = xite*e(k)*h(j);
        d_b(j) = xite*e(k)*w(j)*h(j)*(b(j)^-3)*norm(x-c(:,j))^2;
        for i = 1:1:2
            d_c(i,j) = xite*e(k)*w(j)*h(j)*(x(i)-c(i,j))*(b(j)^-2);
        end
    end
    w = w_1 + d_w + alfa*(w_1 - w_2);
    b = b_1 + d_b + alfa*(b_1 - b_2);
    c = c_1 + d_c + alfa*(c_1 - c_2);
    y_1 = y(k);
    w_2 = w_1;
    w_1 = w;
    c_2 = c_1;
    c_1 = c;
    b_2 = b_1;
    b_1 = b;
end
B = 0;
for i = 1:500
    Ji(i) = abs(e(i));
    B = B + 100*Ji(i);
end
BsJ = B;


Test.m

clear all;
close all;
load pfile;
alfa = 0.05;
xite = 0.85;
x = [0,0]';
%M为1时
M = 2;
if M == 1
    b = [p(1);p(2);p(3)];
    c = [p(4) p(5) p(6);
         p(7) p(8) p(9)];
    w = [p(10);p(11);p(12)];
elseif M == 2
    b = 3*rand(3,1);
    c = 3*rands(2,3);
    w = rands(3,1);
end
w_1 = w;w_2 = w_1;
c_1 = c;c_2 = c_1;
b_1 = b;b_2 = b_1;
y_1 = 0;
ts = 0.001;
for k = 1:1500
    time(k) = k*ts;
    u(k) = sin(5*2*pi*k*ts);
    y(k) = u(k)^3 + y_1/(1 + y_1^2);
    x(1) = u(k);
    x(2) = y(k);
    for j = 1:3
        h(j) = exp(-norm(x-c(:,j))^2/(2*b(j)*b(j)));
    end
    ym(k) = w_1'*h';
    e(k) = y(k) - ym(k);
    d_w = 0*w;d_b = 0*b;d_c=0*c;
    for j = 1:1:3
        d_w(j) = xite*e(k)*h(j);
        d_b(j) = xite*e(k)*w(j)*h(j)*(b(j)^-3)*norm(x-c(:,j))^2;
        for i = 1:1:2
            d_c(i,j) = xite*e(k)*w(j)*h(j)*(x(i) - c(i,j))*(b(j)^-2);
        end
    end
    w = w_1 + d_w + alfa*(w_1 - w_2);
    b = b_1 + d_b + alfa*(b_1 - b_2);
    c = c_1 + d_c + alfa*(c_1 - c_2);
    y_1 = y(k);
    w_2 = w_1;
    w_1 = w;
    c_2 = c_1;
    c_1 = c;
    b_2 = b;
end
figure(1);
plot(time,ym,'r',time,y,'b');
xlabel('times(s)');ylabel('y and ym');


pfile.mat



p: [2.9915 2.9008 2.4982 1.0059 1.1056 0.8006 0.4780 1.6100 -1.3460 -0.7204 0.4076 0.2786]


4 结果




相关文章
|
30天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
40 2
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
1月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
202 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
129 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
91 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
下一篇
无影云桌面