目录
1 遗传算法
2 RBF神经网络
3 Matlab代码实现
4 结果
1 遗传算法
遗传算法是一种基于生物进化原理的优化算法,常用于解决复杂的问题。它的工作原理基于模拟自然选择和遗传机制。
遗传算法的步骤如下:
1. 初始化种群:随机生成初始种群,每个个体都代表一个可能的解决方案。
2. 适应度评估:根据问题的特定评估函数,对每个个体进行评估,衡量其解决问题的效果。
3. 选择操作:根据适应度评估结果,选择一部分个体作为父代。
4. 交叉操作:通过交换父代个体的某些特征,生成新的子代个体。
5. 变异操作:对子代个体进行随机变异,以保持种群的多样性。
6. 替换操作:用子代替换部分父代,形成新的种群。
7. 重复执行步骤2到步骤6,直到满足终止条件(达到最大迭代次数、达到期望解或达到时间限制)。
通过迭代执行以上步骤,遗传算法能够逐渐搜索出更好的解决方案。它适用于各种优化问题,例如组合优化、参数优化、机器学习等。遗传算法具有全局搜索能力和对多个优化目标的适应性,但也具有计算复杂度高的缺点。因此,在应用遗传算法时需要根据具体问题权衡利弊。
2 RBF神经网络
RBF神将网络是一种三层神经网络,其包括输入层、隐层、输出层。从输入空间到隐层空间的变换是非线性的,而从隐层空间到输出层空间变换是线性的。流图如下:
RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。其中,隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想。
这样,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。
3 Matlab代码实现
GA.m
clear all close all G = 15; Size = 30; CodeL = 10; for i = 1:3 MinX(i) = 0.1*ones(1); MaxX(i) = 3*ones(1); end for i = 4:1:9 MinX(i) = -3*ones(1); MaxX(i) = 3*ones(1); end for i = 10:1:12 MinX(i) = -ones(1); MaxX(i) = ones(1); end E = round(rand(Size,12*CodeL)); %Initial Code! BsJ = 0; for kg = 1:1:G time(kg) = kg for s = 1:1:Size m = E(s,:); for j = 1:1:12 y(j) = 0; mj = m((j-1)*CodeL + 1:1:j*CodeL); for i = 1:1:CodeL y(j) = y(j) + mj(i)*2^(i-1); end f(s,j) = (MaxX(j) - MinX(j))*y(j)/1023 + MinX(j); end % ************Step 1:Evaluate BestJ ******************* p = f(s,:); [p,BsJ] = RBF(p,BsJ); BsJi(s) = BsJ; end [OderJi,IndexJi] = sort(BsJi); BestJ(kg) = OderJi(1); BJ = BestJ(kg); Ji = BsJi+1e-10; fi = 1./Ji; [Oderfi,Indexfi] = sort(fi); Bestfi = Oderfi(Size); BestS = E(Indexfi(Size),:); % ***************Step 2:Select and Reproduct Operation********* fi_sum = sum(fi); fi_Size = (Oderfi/fi_sum)*Size; fi_S = floor(fi_Size); kk = 1; for i = 1:1:Size for j = 1:1:fi_S(i) TempE(kk,:) = E(Indexfi(i),:); kk = kk + 1; end end % ****************Step 3:Crossover Operation******************* pc = 0.60; n = ceil(20*rand); for i = 1:2:(Size - 1) temp = rand; if pc>temp for j = n:1:20 TempE(i,j) = E(i+1,j); TempE(i+1,j) = E(i,j); end end end TempE(Size,:) = BestS; E = TempE; %*****************Step 4:Mutation Operation********************* pm = 0.001 - [1:1:Size]*(0.001)/Size; for i = 1:1:Size for j = 1:1:12*CodeL temp = rand; if pm>temp if TempE(i,j) == 0 TempE(i,j) = 1; else TempE(i,j) = 0; end end end end %Guarantee TempE(Size,:) belong to the best individual TempE(Size,:) = BestS; E = TempE; %******************************************************************** end Bestfi BestS fi Best_J = BestJ(G) figure(1); plot(time,BestJ); xlabel('Times');ylabel('BestJ'); save pfile p;
RBF.m
function [p,BsJ] = RBF(p,BsJ) ts = 0.001; alfa = 0.05; xite = 0.85; x = [0,0]'; b = [p(1);p(2);p(3)]; c = [p(4) p(5) p(6); p(7) p(8) p(9)]; w = [p(10);p(11);p(12)]; w_1 = w;w_2 = w_1; c_1 = c;c_2 = c_1; b_1 = b;b_2 = b_1; y_1 = 0; for k = 1:500 timef(k) = k*ts; u(k) = sin(5*2*pi*k*ts); y(k) = u(k)^3 + y_1/(1 + y_1^2); x(1) = u(k); x(2) = y(k); for j = 1:1:3 h(j) = exp(-norm(x - c(:,j))^2/(2*b(j)*b(j))); end ym(k) = w_1'*h'; e(k) = y(k) - ym(k); d_w = 0*w;d_b = 0*b;d_c = 0*c; for j = 1:1:3 d_w(j) = xite*e(k)*h(j); d_b(j) = xite*e(k)*w(j)*h(j)*(b(j)^-3)*norm(x-c(:,j))^2; for i = 1:1:2 d_c(i,j) = xite*e(k)*w(j)*h(j)*(x(i)-c(i,j))*(b(j)^-2); end end w = w_1 + d_w + alfa*(w_1 - w_2); b = b_1 + d_b + alfa*(b_1 - b_2); c = c_1 + d_c + alfa*(c_1 - c_2); y_1 = y(k); w_2 = w_1; w_1 = w; c_2 = c_1; c_1 = c; b_2 = b_1; b_1 = b; end B = 0; for i = 1:500 Ji(i) = abs(e(i)); B = B + 100*Ji(i); end BsJ = B;
Test.m
clear all; close all; load pfile; alfa = 0.05; xite = 0.85; x = [0,0]'; %M为1时 M = 2; if M == 1 b = [p(1);p(2);p(3)]; c = [p(4) p(5) p(6); p(7) p(8) p(9)]; w = [p(10);p(11);p(12)]; elseif M == 2 b = 3*rand(3,1); c = 3*rands(2,3); w = rands(3,1); end w_1 = w;w_2 = w_1; c_1 = c;c_2 = c_1; b_1 = b;b_2 = b_1; y_1 = 0; ts = 0.001; for k = 1:1500 time(k) = k*ts; u(k) = sin(5*2*pi*k*ts); y(k) = u(k)^3 + y_1/(1 + y_1^2); x(1) = u(k); x(2) = y(k); for j = 1:3 h(j) = exp(-norm(x-c(:,j))^2/(2*b(j)*b(j))); end ym(k) = w_1'*h'; e(k) = y(k) - ym(k); d_w = 0*w;d_b = 0*b;d_c=0*c; for j = 1:1:3 d_w(j) = xite*e(k)*h(j); d_b(j) = xite*e(k)*w(j)*h(j)*(b(j)^-3)*norm(x-c(:,j))^2; for i = 1:1:2 d_c(i,j) = xite*e(k)*w(j)*h(j)*(x(i) - c(i,j))*(b(j)^-2); end end w = w_1 + d_w + alfa*(w_1 - w_2); b = b_1 + d_b + alfa*(b_1 - b_2); c = c_1 + d_c + alfa*(c_1 - c_2); y_1 = y(k); w_2 = w_1; w_1 = w; c_2 = c_1; c_1 = c; b_2 = b; end figure(1); plot(time,ym,'r',time,y,'b'); xlabel('times(s)');ylabel('y and ym');
pfile.mat
p: [2.9915 2.9008 2.4982 1.0059 1.1056 0.8006 0.4780 1.6100 -1.3460 -0.7204 0.4076 0.2786]
4 结果