【CNN时序预测】基于卷积神经网络的时间序列预测附matlab完整代码

简介: 【CNN时序预测】基于卷积神经网络的时间序列预测附matlab完整代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

基于卷积神经网络(CNN)的时间序列预测是一种使用CNN模型来处理时间序列数据并进行预测的方法。相比于传统的基于循环神经网络(RNN)的方法,CNN在处理时间序列数据时具有一些独特的优势。

以下是基于CNN的时间序列预测的基本步骤:

  1. 数据准备:将时间序列数据集分为训练集和测试集。训练集用于训练CNN模型,测试集用于评估模型的预测性能。
  2. 数据转换:由于CNN是基于图像处理的模型,需要将时间序列数据转换为二维图像数据。常用的方法有滑动窗口法和傅里叶变换法等。
  3. CNN模型构建:构建一个包含卷积层、池化层和全连接层的CNN模型。卷积层用于提取时间序列数据中的特征,池化层用于降低特征维度,全连接层用于输出预测结果。
  4. 模型训练:使用训练集对CNN模型进行训练。通过反向传播算法更新模型的权重和偏置,以最小化预测误差。
  5. 模型预测:使用训练好的CNN模型对测试集进行预测。输入测试集的图像数据,通过前向传播算法得到预测结果。
  6. 模型评估:使用预测结果与测试集的真实值进行比较,计算预测误差、均方根误差等指标,评估模型的预测性能。

需要注意的是,基于CNN的时间序列预测方法可以利用CNN对时间序列数据的局部特征进行提取,并具有良好的并行性和可解释性。然而,在实际应用中,需要根据问题的复杂性和数据的特点来选择合适的CNN模型结构和参数设置,以获得更好的预测效果。同时,还可以结合其他技术和方法,如自注意力机制(self-attention)、残差网络(residual network)等,进一步提升预测性能。

⛄ 代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据(时间序列的单列数据)result = xlsread('数据集.xlsx');%%  数据分析num_samples = length(result);  % 样本个数 kim = 15;                      % 延时步长(kim个历史数据作为自变量)zim =  1;                      % 跨zim个时间点进行预测%%  划分数据集for i = 1: num_samples - kim - zim + 1    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];end%%  划分训练集和测试集temp = 1: 1: 922;P_train = res(temp(1: 700), 1: 15)';T_train = res(temp(1: 700), 16)';M = size(P_train, 2);P_test = res(temp(701: end), 1: 15)';T_test = res(temp(701: end), 16)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺% 将数据平铺成1维数据只是一种处理方式% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构% 但是应该始终和输入层数据结构保持一致p_train =  double(reshape(p_train, 15, 1, 1, M));p_test  =  double(reshape(p_test , 15, 1, 1, N));t_train =  double(t_train)';t_test  =  double(t_test )';%%  构造网络结构layers = [ imageInputLayer([15, 1, 1])                 % 输入层 输入数据规模[15, 1, 1]  convolution2dLayer([3, 1], 16, 'Stride', [1, 1], 'Padding', 'same')                                                           % 卷积核大小 3 * 1 生成 16 张特征图 batchNormalizationLayer                     % 批归一化层 reluLayer                                   % Relu激活层  convolution2dLayer([3, 1], 32, 'Stride', [1, 1], 'Padding', 'same')                                              % 卷积核大小 3 * 1 生成 32 张特征图 batchNormalizationLayer                     % 批归一化层 reluLayer                                   % Relu激活层 fullyConnectedLayer(1)                      % 全连接层 regressionLayer];                           % 回归层%%  参数设置options = trainingOptions('adam', ...      % Adam 梯度下降算法    'MaxEpochs', 800, ...                  % 最大训练次数 800    'InitialLearnRate', 5e-3, ...          % 初始学习率为 0.005    'LearnRateSchedule', 'piecewise', ...  % 学习率下降    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1    'LearnRateDropPeriod', 600, ...        % 经过 600 次训练后 学习率为 0.005 * 0.1    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集    'Plots', 'training-progress', ...      % 画出曲线    'Verbose', false);%%  训练模型net = trainNetwork(p_train, t_train, layers, options);%%  模型预测t_sim1 = predict(net, p_train);t_sim2 = predict(net, p_test );%%  数据反归一化T_sim1 = mapminmax('reverse', t_sim1, ps_output);T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  绘制网络分析图analyzeNetwork(layers)%%  绘图figureplot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};title(string)xlim([1, M])gridfigureplot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};title(string)xlim([1, N])grid%%  相关指标计算% R2R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])disp(['测试集数据的R2为:', num2str(R2)])% MAEmae1 = sum(abs(T_sim1' - T_train)) ./ M ;mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])disp(['测试集数据的MAE为:', num2str(mae2)])% MBEmbe1 = sum(T_sim1' - T_train) ./ M ;mbe2 = sum(T_sim2' - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])disp(['测试集数据的MBE为:', num2str(mbe2)])%%  绘制散点图sz = 25;c = 'b';figurescatter(T_train, T_sim1, sz, c)hold onplot(xlim, ylim, '--k')xlabel('训练集真实值');ylabel('训练集预测值');xlim([min(T_train) max(T_train)])ylim([min(T_sim1) max(T_sim1)])title('训练集预测值 vs. 训练集真实值')figurescatter(T_test, T_sim2, sz, c)hold onplot(xlim, ylim, '--k')xlabel('测试集真实值');ylabel('测试集预测值');xlim([min(T_test) max(T_test)])ylim([min(T_sim2) max(T_sim2)])title('测试集预测值 vs. 测试集真实值')

⛄ 运行结果

⛄ 参考文献

[1] 吴俊杰,罗宇,刘亮,等.一种基于卷积神经网络的时间序列负荷预测方法:CN202210198854.X[P].CN202210198854.X[2023-07-12].

[2] 胡聪丛.基于卷积神经网络的多变量时间序列数值预测方法研究[J].数码设计(下), 2019.

[3] 吴俊杰,罗宇,刘亮,等.一种基于卷积神经网络的时间序列负荷预测方法:202210198854[P][2023-07-12].

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长


相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
3天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
11 1
|
6天前
|
机器学习/深度学习 SQL 数据采集
基于tensorflow、CNN网络识别花卉的种类(图像识别)
基于tensorflow、CNN网络识别花卉的种类(图像识别)
11 1
|
6天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
4天前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
9 0
|
11天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第6天】在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将探讨网络安全漏洞、加密技术和安全意识等方面的内容,以帮助读者更好地了解这些主题,并采取适当的措施保护自己的信息安全。我们将通过代码示例来演示一些常见的安全漏洞,并提供解决方案。最后,我们将强调培养良好的安全意识对于维护个人和组织的信息安全的重要性。
|
8天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:守护数字世界的坚盾
在数字化浪潮中,网络安全已成为维系现代社会正常运转的关键。本文旨在探讨网络安全漏洞的成因、加密技术的应用及安全意识的提升,以期为广大用户和技术人员提供实用的知识分享。通过对这些方面的深入剖析,我们期望能够共同构建一个更加安全可靠的数字环境。

热门文章

最新文章