MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性

简介: MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码实现


💥1 概述

主动噪声和振动控制问题可用图 1 中的反馈框图来表示:


c20cf417cdf249fc855c956e3bad8b03.png


图中 z 表示性能变量,w 表示外部的输入干扰,反馈控制器 C 的设计是为了使得系统对于外部输入扰动w 的响应 z 应满足某种事先设定的条件。如: 跟踪给定参考值或响应趋于零等。性能变量 z 可以是某些物理量如在某点的加速度,模型能量或空间的扭曲度。观测变量 y 和控制变量 z 包括: 荷载力,扭曲,加速度,速度,角度,压力等,所有的实测量都应通过两个转换器 A 和 S 以变成物理域中的变量。因为每个实验装置中的物理条件的限制使得两个转换器中存在大量的对于观测变量 y 和控制变量 u 约束。饱和是遇到最常见的约束条件,它表示变量被限制在指定的特定范围之间。主动噪声控制中的饱和包括: 扩音器的输出电压和电流范围、麦克风振动的位置范围、微机的荷载力范围、惯性驱动的力范围。饱和约束的产生是因为没有足够的资源来达到期望的输出或者是由于机械和电子的失控而产生的输出。


📚2 运行结果


99af135c67684ef5aca9e8ae4e9103d4.png

f8cdba2a4e4a48ddb903f7eeb9d11014.png

d87012bb9ea14b67aa21c13c1f9febd8.png

06993b3ef7534c0c8b9c82e36a74cb81.png

e40f6e34a27f47d19e08a26d2d58159e.png


部分代码:

stability_margin = 0.1;     % distance of model poles and zeros from the unit circle
f = 200*(1:3)';             % primary noise sinusoids frequencies
amplitudes = [0.5, 1.2, 0.3]';      % primary noise sinusoids amplitudes
phases = [56, 170, -23]'*pi/180;    % primary noise sinusoids phases
frequency_noise = 0;        % rms Hz
Nx = 6;                     % model order (size-1)
on_id = 100;                % system identification start
on = 1000;                  % ANC start
qv0 = 0.01;                 % background noise power
% algorithm parameters
N = 15;                     % model order (size-1)
L = 64;                     % MPC horizont length
M = 32*(N+1);               % algorithm memory
P = M;                      % size of qv estimation blocks
R = N;                      % size of qv estimation blocks
Lu = 10;                    % saturation of the antinoise signal
wd = 10000;                 % keep past control signals constant
wu = 1e-6;                  % effort weigth on control signal u
deltax = 1e-3;              % prior 1/sigma^2 pior of a and b (x)
delta = 1e-9;               % actual value added Rxx to calc Sxx (<deltax)
alpha = 0;                  % controls auxiliary noise power
eta = 1.01;                 % max grouth rate of u (per sin half period)
Q = 8;                      % control signal update interval
% Signal logs
log_e = nan*zeros(simulation_time, Nsim);
log_u = nan*zeros(simulation_time, Nsim);
log_xi = nan*zeros(simulation_time, Nsim);
log_xi0 = nan*zeros(simulation_time, Nsim);
log_qv = nan*zeros(simulation_time, Nsim);
for n_sim = 1:Nsim
    tic
    rng(343989 + n_sim);
    % simulation intializations
    frequency = f' + frequency_noise*randn(simulation_time+L, length(f));
    phase = 2*pi*cumsum(frequency)/fs + phases';
    d0 = sin(phase)*amplitudes;
    d = d0 + sqrt(qv0)*randn(simulation_time+L, 1);  % primary noise signal
    [a,b] = generate_plant(Nx, stability_margin);
    uv = zeros(max(M+N+1, 2*L), 1);        % anti-noise buffer
    e1v = zeros(Nx+1, 1);    % residual noise minus background noise buffer
    % algorithm initialization
    u = 0;                   % anti-noise signal
    ev = zeros(M+N,1);       % residual noise buffer
    wuv = wu*ones(L+N,1);
    wev = ones(L,1);
    for k = 1:simulation_time
        % simulation
        qn = qn_steady + qn_change*(abs(k-change_at)<=change_time/2);
        a(2:end) = a(2:end) + std(a(2:end))*sqrt(qn)*randn(Nx,1);
        b = b + std(b)*sqrt(qn)*randn(Nx+1,1);
        if qn > 0
            [a,b] = adjust_plant(a,b,stability_margin);
        end
%         if k == change_at
%             b = - b;
%         end
        log_u(k,n_sim) = u;    % logs u(n) and not u(n+1)
        uv = [u; uv(1:end-1)]; % simulation and algorithm


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]王建宏,王道波.子空间预测控制算法在主动噪声振动中的应用[J].振动与冲击,2011,30(10):129-135.DOI:10.13465/j.cnki.jvs.2011.10.013.


[2]Paulo A. C. Lopes (2023) Careful Feedback Active Noise and Vibration Control Algorithm Robust to Large Secondary Path Changes


🌈4 Matlab代码实现


目录
打赏
0
0
0
0
78
分享
相关文章
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
124 12
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等