基于python+django的宠物商店-宠物管理系统

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 该系统是基于python+django开发的宠物商店-宠物管理系统。是给师妹开发的课程作业。现将源码开放给大家。大家学习过程中,如遇问题可以在github咨询作者。

该系统是基于python+django开发的宠物商店-宠物管理系统。是给师妹开发的课程作业。现将源码开放给大家。大家学习过程中,如遇问题可以在github咨询作者。

演示地址

前台地址: http://pet.gitapp.cn

后台地址: http://pet.gitapp.cn/admin

后台管理帐号:

用户名:admin123
密码:admin123

源码地址

https://github.com/geeeeeeeek/python_pet

功能介绍

平台采用B/S结构,后端采用主流的Python语言+django框架进行开发,前端采用主流的Vue.js进行开发。

整个平台包括前台和后台两个部分。

  • 前台功能包括:首页、宠物详情页、用户中心模块。
  • 后台功能包括:总览、订单管理、宠物管理、分类管理、标签管理、评论管理、用户管理、运营管理、日志管理、系统信息模块。

代码结构

  • server目录是后端代码
  • web目录是前端代码

部署运行

后端运行步骤

(1) 安装python 3.8

(2) 安装依赖。进入server目录下,执行 pip install -r requirements.txt

(3) 安装mysql 5.7数据库,并创建数据库,命名为shop,创建SQL如下:

CREATE DATABASE IF NOT EXISTS xxx DEFAULT CHARSET utf8 COLLATE utf8_general_ci

(4) 恢复shop.sql数据。在mysql下依次执行如下命令:

mysql> use xxxx;
mysql> source D:/xxx/xxx/xxx.sql;

(5) 启动django服务。在server目录下执行:

python manage.py runserver

前端运行步骤

(1) 安装node 16.14

(2) 进入web目录下,安装依赖,执行:

npm install

(3) 运行项目

npm run dev

待完善功能

  • 邮箱推送功能
  • 手机号绑定功能
  • 粉丝关注功能
  • 支付功能
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
1月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
1月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
1月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
1月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
基于python的餐厅点餐系统
本课题研究开发餐厅点餐系统,旨在提升餐厅信息处理效率与管理水平。通过计算机技术规范点餐流程,加快信息处理速度,助力管理人员高效运作。系统包含功能结构图与具体实现模块,全面展示系统设计与运行逻辑。