计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置(Matlab代码实现)

简介: 计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

1.1 改进灰狼优化算法

1.2 计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置概述

📚2 运行结果

2.1 需求响应前

2.2 实时电价(需求响应)

2.3 实时电价(需求响应)

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

1.1 改进灰狼优化算法


b69761315491a39dad3c65b17870ed9a.png


摘要:在分析灰狼优化算法不足的基础上,提出一种改进的灰狼优化算法(CGWO),该算法采用基于余弦规律变化的收敛因子,平衡算法的全局搜索和局部搜索能力,同时引入基于步长欧氏距离的比例权重更新灰狼位置,从而加快算法的收敛速度。对8个经典测试函数进行仿真实验,结果表明CGWO算法的求解精度更高,稳定性更好。最后以预测谷氨酸菌体生长浓度为例,利用CGWO算法估计Richards模型的参数,以均方根误差和平均绝对误差作为评价指标,与PSO算法、GA算法和VS-FOA算法的结果进行比较,CGWO算法可以有效地估计Richards模型中的参数。


关键词:


灰狼优化算法;收敛因子;Richards模型;参数估计;


13f2da5b1a6daa02fa83946222948562.png


1.2 计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置概述

参考文献:


7b01a008d8493ab235fab00a9eb4509f.png


编辑 在偏远地区和远离内陆的海岛,由于连接大电网建设成本高、技术难度大,通常选择柴油发电机供电,但存在燃料运输成本高、价格波动大、环境污染严重等问题,难以保障上述地区稳定的电力供应。相比柴油发电机而言,这些地区往往拥有丰富的风、光等可再生清洁资源。因此,因地制宜地建设以风、光可再生能源为核心的独立微电网是解决上述地区供电问题的重要途径之一。对独立微电网进行电源容量配置是系统优化设计的重要内容之一,也是保障系统安全可靠运行的重要基础[1] 。由于独立微电网中分布式电源种类较多且各发电单元出力特性差异较大,使得微电网容量优化配置问题呈现高度非线性、复杂性和不确定性,从而使得传统优化方法很难取得令人满意的结果[2] 。


近年,遗传算法 、细菌觅食算法及粒子群算法等智能优化算法在微电网容量优化配置中获得广泛应用。 文献[7]使用改进果蝇算法求解独立微电网的电源容量优化配置问题,优化目标函数包括系统运行成本和环保成本; 文献[8]提出以投资总成本和缺电负荷率为目标的微电网优


化配置模型,并利用多目标微分进化算法进行优化求解,实现微电网的容量最优配置;文献[9]在建立风-光-蓄-柴微电网电源配置模型的基础上,采用人工蜂群算法对优化问题进行求解,并对不同电源组合方式下的运行成本和污染物排放进行了对比分析。


📚2 运行结果

2.1 需求响应前


1e6e015f7c3d3e95f5419050d70c09cd.png

8b2f151293627a8b4da54a0823a9354d.png

7dfdeeb5fc4c77ad4086a0d02f0f2f40.png

0871936c873bae4e241cefa9d44b9fe4.png


收敛曲线:




2.2 实时电价(需求响应)


5817ed2081eb5ac865b0cb6e6ef86e47.png

2f3e0b8512e2ecd68e261835658a4671.png

fa88bc3223ff67857f9ba9cc6f7d6be3.png

044fdc78355dc0f0a3eb3d6a5b7726f8.png

89f9c5ae4f31fbb902492ab358461b56.png

7ffa9c4e723f15ef4a098c6ff593b7a2.png

c7f8224c8c9dbbf408e4897d329496e5.png

05ccecd93e48800a7c1fc358ec1249c1.png


2.3 实时电价(需求响应)

e8f4678ca15fc47a7ed497ec46ecb2b5.png

bbfb063cd771375a6d835bac540c5a7f.png

eb5d08e202865ce9d4d83de7a72cd953.png

5550fe9347e88ad30b29d5334bfe7538.png

5dfcb6f79f3452e8493b9a551cfb99de.png

71c8a6544280342fb87b011fbcf47f0b.png

2860549650c247270f564dc2da70700c.png

6aded2bb33f51c38eff71258d48230ef.png

96716547f2cd0bf47c40febb8336c810.png


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]赵超,王斌,孙志新,汪轩.基于改进灰狼算法的独立微电网容量优化配置[J].太阳能学报,2022,43(01):256-262.DOI:10.19912/j.0254-0096.tynxb.2020-0042.


🌈4 Matlab代码实现


相关文章
|
13天前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
13天前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
13天前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
5天前
|
机器学习/深度学习 算法 Python
matlab思维进化算法优化BP神经网络
matlab思维进化算法优化BP神经网络
|
1月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
1月前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
2月前
|
算法 数据可视化 BI
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
1月前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
125 12
|
1月前
|
算法 数据安全/隐私保护
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。

热门文章

最新文章