PyTorch模型创建与nn.Module

简介: PyTorch模型创建与nn.Module

模型创建与nn.Module

创建网络模型通常有2个要素:

  • 构建子模块
  • 拼接子模块

-

class LeNet(nn.Module):
    # 子模块创建
    def __init__(self, classes):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, classes)
    # 子模块拼接
    def forward(self, x):
        out = F.relu(self.conv1(x))
        out = F.max_pool2d(out, 2)
        out = F.relu(self.conv2(out))
        out = F.max_pool2d(out, 2)
        out = out.view(out.size(0), -1)
        out = F.relu(self.fc1(out))
        out = F.relu(self.fc2(out))
        out = self.fc3(out)
        return out

调用net = LeNet(classes=2)创建模型时,会调用__init__()方法创建模型的子模块。

训练调用outputs = net(inputs)时,会进入module.pycall()函数中:

    def __call__(self, *input, **kwargs):
        for hook in self._forward_pre_hooks.values():
            result = hook(self, input)
            if result is not None:
                if not isinstance(result, tuple):
                    result = (result,)
                input = result
        if torch._C._get_tracing_state():
            result = self._slow_forward(*input, **kwargs)
        else:
            result = self.forward(*input, **kwargs)
        ...
        ...
        ...

最终会调用result = self.forward(*input, **kwargs)函数,该函数会进入模型的forward()函数中,进行前向传播。

torch.nn中包含 4 个模块,如下图所示。

本次重点就在于nn.Model的解析:

nn.Module

nn.Module 有 8 个属性,都是OrderDict(有序字典)的结构。在 LeNet 的__init__()方法中会调用父类nn.Module__init__()方法,创建这 8 个属性。

    def __init__(self):
        """
        Initializes internal Module state, shared by both nn.Module and ScriptModule.
        """
        torch._C._log_api_usage_once("python.nn_module")
​
        self.training = True
        self._parameters = OrderedDict()
        self._buffers = OrderedDict()
        self._backward_hooks = OrderedDict()
        self._forward_hooks = OrderedDict()
        self._forward_pre_hooks = OrderedDict()
        self._state_dict_hooks = OrderedDict()
        self._load_state_dict_pre_hooks = OrderedDict()
        self._modules = OrderedDict()
  • _parameters 属性:存储管理 nn.Parameter 类型的参数
  • _modules 属性:存储管理 nn.Module 类型的参数
  • _buffers 属性:存储管理缓冲属性,如 BN 层中的 running_mean
  • 5 个 *_hooks 属性:存储管理钩子函数

LeNet 的__init__()中创建了 5 个子模块,nn.Conv2d()nn.Linear()都继承于nn.module,即一个 module 都是包含多个子 module 的。

class LeNet(nn.Module):
    # 子模块创建
    def __init__(self, classes):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, classes)
        ...
        ...
        ...

当调用net = LeNet(classes=2)创建模型后,net对象的 modules 属性就包含了这 5 个子网络模块。

下面看下每个子模块是如何添加到 LeNet 的_modules 属性中的。以self.conv1 = nn.Conv2d(3, 6, 5)为例,当我们运行到这一行时,首先 Step Into 进入 Conv2d的构造,然后 Step Out。右键Evaluate Expression查看nn.Conv2d(3, 6, 5)的属性。

上面说了Conv2d也是一个 module,里面的_modules属性为空,_parameters属性里包含了该卷积层的可学习参数,这些参数的类型是 Parameter,继承自 Tensor。

此时只是完成了nn.Conv2d(3, 6, 5) module 的创建。还没有赋值给self.conv1nn.Module里有一个机制,会拦截所有的类属性赋值操作(self.conv1是类属性) ,进入到__setattr__()函数中。我们再次 Step Into 就可以进入__setattr__()

   def __setattr__(self, name, value):
        def remove_from(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]
​
        params = self.__dict__.get('_parameters')
        if isinstance(value, Parameter):
            if params is None:
                raise AttributeError(
                    "cannot assign parameters before Module.__init__() call")
            remove_from(self.__dict__, self._buffers, self._modules)
            self.register_parameter(name, value)
        elif params is not None and name in params:
            if value is not None:
                raise TypeError("cannot assign '{}' as parameter '{}' "
                                "(torch.nn.Parameter or None expected)"
                                .format(torch.typename(value), name))
            self.register_parameter(name, value)
        else:
            modules = self.__dict__.get('_modules')
            if isinstance(value, Module):
                if modules is None:
                    raise AttributeError(
                        "cannot assign module before Module.__init__() call")
                remove_from(self.__dict__, self._parameters, self._buffers)
                modules[name] = value
            elif modules is not None and name in modules:
                if value is not None:
                    raise TypeError("cannot assign '{}' as child module '{}' "
                                    "(torch.nn.Module or None expected)"
                                    .format(torch.typename(value), name))
                modules[name] = value
            ...
            ...
            ...

在这里判断 value 的类型是Parameter还是Module,存储到对应的有序字典中。

这里nn.Conv2d(3, 6, 5)的类型是Module,因此会执行modules[name] = value,key 是类属性的名字conv1,value 就是nn.Conv2d(3, 6, 5)

总结

  • 一个 module 里可包含多个子 module。比如 LeNet 是一个 Module,里面包括多个卷积层、池化层、全连接层等子 module
  • 一个 module 相当于一个运算,必须实现 forward() 函数
  • 每个 module 都有 8 个字典管理自己的属性
目录
相关文章
|
1月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
153 2
|
1月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
55 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
1月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
51 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
2月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
131 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
2月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
40 3
PyTorch 模型调试与故障排除指南
|
1月前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法
|
3月前
|
机器学习/深度学习 PyTorch 编译器
PyTorch 与 TorchScript:模型的序列化与加速
【8月更文第27天】PyTorch 是一个非常流行的深度学习框架,它以其灵活性和易用性而著称。然而,当涉及到模型的部署和性能优化时,PyTorch 的动态计算图可能会带来一些挑战。为了解决这些问题,PyTorch 引入了 TorchScript,这是一个用于序列化和优化 PyTorch 模型的工具。本文将详细介绍如何使用 TorchScript 来序列化 PyTorch 模型以及如何加速模型的执行。
118 4
|
3月前
|
机器学习/深度学习 边缘计算 PyTorch
PyTorch 与边缘计算:将深度学习模型部署到嵌入式设备
【8月更文第29天】随着物联网技术的发展,越来越多的数据处理任务开始在边缘设备上执行,以减少网络延迟、降低带宽成本并提高隐私保护水平。PyTorch 是一个广泛使用的深度学习框架,它不仅支持高效的模型训练,还提供了多种工具帮助开发者将模型部署到边缘设备。本文将探讨如何将PyTorch模型高效地部署到嵌入式设备上,并通过一个具体的示例来展示整个流程。
489 1
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
PyTorch与Hugging Face Transformers:快速构建先进的NLP模型
【8月更文第27天】随着自然语言处理(NLP)技术的快速发展,深度学习模型已经成为了构建高质量NLP应用程序的关键。PyTorch 作为一种强大的深度学习框架,提供了灵活的 API 和高效的性能,非常适合于构建复杂的 NLP 模型。Hugging Face Transformers 库则是目前最流行的预训练模型库之一,它为 PyTorch 提供了大量的预训练模型和工具,极大地简化了模型训练和部署的过程。
166 2
|
3月前
|
机器学习/深度学习 边缘计算 PyTorch
PyTorch 与 ONNX:模型的跨平台部署策略
【8月更文第27天】深度学习模型的训练通常是在具有强大计算能力的平台上完成的,比如配备有高性能 GPU 的服务器。然而,为了将这些模型应用到实际产品中,往往需要将其部署到各种不同的设备上,包括移动设备、边缘计算设备甚至是嵌入式系统。这就需要一种能够在多种平台上运行的模型格式。ONNX(Open Neural Network Exchange)作为一种开放的标准,旨在解决模型的可移植性问题,使得开发者可以在不同的框架之间无缝迁移模型。本文将介绍如何使用 PyTorch 将训练好的模型导出为 ONNX 格式,并进一步探讨如何在不同平台上部署这些模型。
204 2

热门文章

最新文章