AcWing数据结构 - 数据结构在算法比赛中的应用(上)

简介: AcWing数据结构 - 数据结构在算法比赛中的应用(上)

单链表

思路:

工程链表:

typedef struct SListNode
{
  int data; // val
  struct SListNode* next; // 存储下一个节点的地址
}SLN;

算法表示法:

head 表示头结点的下标,数组e[]表示链表 date值,ne[]表示存储下一个节点的地址的指针next,idx 存储当前已经用到了哪个点

#include <iostream>
using namespace std;
const int N = 100010;
// head 表示头结点的指针
// e[i] 表示节点i的值
// ne[i] 表示节点i的next指针是多少
// idx 存储当前已经用到了哪个点,工程链表中的新地址
int head, e[N], ne[N], idx;
// 初始化
void init()
{
    head = -1;  //-1表示指向空
    idx = 0;    //下标索引从0开始
}
// 将x插到头结点
void add_to_head(int x)
{
    e[idx] = x, ne[idx] = head, head = idx ++ ;
}
// 将x插到下标是k的点后面
void add(int k, int x)
{
    e[idx] = x, ne[idx] = ne[k], ne[k] = idx ++ ;
}
// 将下标是k的点后面的点删掉
void remove(int k)
{
    ne[k] = ne[ne[k]];    //让结点直接指向下一个结点的next,不用管内存泄漏
}
int main()
{
    int m;
    cin >> m;
    init();
    while (m -- )
    {
        int k, x;
        char op;
        cin >> op;
        if (op == 'H')
        {
            cin >> x;
            add_to_head(x);
        }
        else if (op == 'D')
        {
            cin >> k;
            if (!k) head = ne[head];    //如果k为0,删除头结点,ne[head]表示头结点的下一节点
            else remove(k - 1);    //k-1对应从0开始的idx
        }
        else
        {
            cin >> k >> x;
            add(k - 1, x);
        }
    }
    for (int i = head; i != -1; i = ne[i]) cout << e[i] << ' ';
    cout << endl;
    return 0;
}

双链表

思路:

与单链表类似,e[N]存值,l[N]、r[N]表示左右指针

双链表初始化:

0号店表示头结点,1号表示尾节点

    r[0] = 1, l[1] = 0;
    idx = 2;

删除节点a的remove()函数

void remove(int a)
{
    l[r[a]] = l[a];
    r[l[a]] = r[a];
}
//先内层再到外层

在节点k的右边插入一个数x方法

第一步:开一个新节点,左右指针指向k,与k的下一个节点

第二步:先让k的下一个节点的左指针指向新点,再用k的右指针指向新点;顺序搞错会导致数据覆盖

void insert(int a, int x)
{
    e[idx] = x;
    l[idx] = a, r[idx] = r[a];
    l[r[a]] = idx, r[a] = idx ++ ;
}
#include <iostream>
using namespace std;
const int N = 100010;
int m;
int e[N], l[N], r[N], idx;
// 在节点a的右边插入一个数x
void insert(int a, int x)
{
    e[idx] = x;
    l[idx] = a, r[idx] = r[a];
    l[r[a]] = idx, r[a] = idx ++ ;
}
// 删除节点a
void remove(int a)
{
    l[r[a]] = l[a];
    r[l[a]] = r[a];
}
int main()
{
    cin >> m;
    // 0是左端点,1是右端点
    r[0] = 1, l[1] = 0;
    idx = 2;
    while (m -- )
    {
        string op;
        cin >> op;
        int k, x;
        if (op == "L")
        {
            cin >> x;
            insert(0, x);
        }
        else if (op == "R")
        {
            cin >> x;
            insert(l[1], x);
        }
        else if (op == "D")
        {
            cin >> k;
            remove(k + 1);  //idx从2开始,插入节点夹在head与tail之间
        }
        else if (op == "IL")
        {
            cin >> k >> x;
            insert(l[k + 1], x);
        }
        else
        {
            cin >> k >> x;
            insert(k + 1, x);
        }
    }
    for (int i = r[0]; i != 1; i = r[i]) cout << e[i] << ' ';
    cout << endl;
    return 0;
}

模拟栈

#include <iostream>
using namespace std;
const int N = 100010;
int st[N];
int top,n;
int main()
{
    cin>>n;
    while(n--)
    {
        string s;
        cin>>s;
        if(s=="push")
        {
            int a;
            cin>>a;
            st[++top]=a;
        }
        else if(s=="pop")
        {
            --top;
        }
        else if(s=="query")
        {
            cout<<st[top]<<endl;
        }
        else if(s=="empty")
        {
            cout<<(top==0?"YES":"NO")<<endl;
        }
    }
    return 0;
}

表达式求值模板

#include<iostream>
#include<stack>
#include<unordered_map>
using namespace std;
stack<int> num;
stack<char> op;
unordered_map<char,int> h{{'+',1},{'-',1},{'*',2},{'/',2}};//数值表示优先级
void eval()
{
    int a=num.top();
    num.pop();
    int b=num.top();
    num.pop();
    char p=op.top();
    op.pop();
    int r=0;
    if(p=='+') r=b+a;
    if(p=='-') r=b-a;
    if(p=='*') r=b*a;
    if(p=='/') r=b/a;
    num.push(r);
}
int main()
{
    string s;
    cin>>s;
    for(int i=0;i<s.size();i++)
    {
        if(isdigit(s[i]))//如果是数字则转化入栈
        {
            int x=0,j=i;
            while(j<s.size()&&isdigit(s[j]))
            {
                x=x*10+s[j]-'0';
                j++;
            }
            num.push(x);
            i=j-1;
        }
        else if(s[i]=='(')
        {
            op.push(s[i]); 
        }
        else if(s[i]==')')//遇到右括号直接操作括号里的
        {
            while(op.top()!='(') eval();
            op.pop();
        }
        else
        {
            //前一个符号优先级不小于当前符号,说明可以计算后再加入当前符号
            while(op.size()&&h[op.top()]>=h[s[i]]) eval();
            op.push(s[i]);
        }
    }
    while(op.size()) eval();
    cout<<num.top()<<endl;
    return 0;
}

模拟队列

#include<iostream>
using namespace std;
const int N=1e5+10;
int q[N];
int main()
{
    int n;
    cin>>n;
    int hh=0,tt=0;
    while(n--)
    {
        string op;
        int x;
        cin>>op;
        if(op=="push")
        {
            cin>>x;
            q[tt++]=x;
        }
        else if(op=="pop") hh++;
        else if(op=="empty")
        {
            if(hh<tt) puts("NO");
            else puts("YES");
        }
        else cout<<q[hh]<<endl;
    }
    return 0;
}

单调栈

cin,cout速度大幅提高方法:

cin.tie(0);
ios::sync_with_stdio(false);
#include <iostream>
using namespace std;
const int N = 100010;
int stk[N], tt;
int main()
{
    //cin.tie(0);
   // ios::sync_with_stdio(false);
    int n;
    cin >> n;
    while (n -- )
    {
        int x;
        cin>>x;
        while (tt && stk[tt] >= x) tt -- ;  //不符合,出栈
        if (!tt) cout<<"-1"<<" ";
        else cout<<stk[tt]<<" ";
        stk[ ++ tt] = x;    //当前值入栈,与下一个数比较
    }
    return 0;
}

单调队列&滑动窗口

思路:


利用双端队列思想

设 队列q[hh],q[tt]分别表示窗口左边界(队头)与右边界(队尾),存储下标

用 i 表示窗口进程,则窗口范围【i-k+1,i】

(先求最小值)根据滑动窗口性质,队头的数会先消失,如果队尾插入的值比前一个数小,则前数不是最小值,所以直到出窗口也不会被输出


核心操作:如果队尾插入的值比前一个数小,那么将前一个数移出队列,最终队列会形成单调递增,取最小值永远在q[hh]处取

#include <iostream>
using namespace std;
const int N = 1000010;
int a[N], q[N];
int main()
{
    int n, k;
    scanf("%d%d", &n, &k);
    for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
    int hh=0,tt=-1;//分别表示左边界和右边界
    for(int i=0;i<n;i++)
    {
        if(hh<=tt&&i-q[hh]+1>k) hh++;
        while(hh<=tt&& a[q[tt]]>=a[i]) tt--;//不符合单增
        q[++tt]=i;//先看前面元素与当前值是否构成单增再入队
        if(i>=k-1) cout<<a[q[hh]]<<" ";//始终确保q[hh]为最小值,即单调递增序列
    }
    puts("");
    hh = 0, tt = -1;
    for (int i = 0; i < n; i ++ )
    {
        if (hh <= tt && i - k + 1 > q[hh]) hh ++ ;
        while (hh <= tt && a[q[tt]] <= a[i]) tt -- ;    //对于最大值,直接改为单调递减即可
        q[ ++ tt] = i;
        if (i >= k - 1) printf("%d ", a[q[hh]]);
    }
    puts("");
    return 0;
}

KMP字符串

一个人能走的多远不在于他在顺境时能走的多快,而在于他在逆境时多久能找到曾经的自己。

                                                                                                                                     ------- KMP

#include<iostream>
using namespace std;
const int N=100010,M=1000010;
char q[N],s[M];
int ne[N];//保存next数组
int main()
{
    int n,m;
    cin>>n>>q+1>>m>>s+1;//下标均从1开始
    for(int i=2,j=0;i<=n;i++)
    //j表示匹配成功的长度,i表示q数组中的下标,因为q数组的下标是从1开始的,只有1个时,一定为0,所以i从2开始
    {
        while(j&&q[i]!=q[j+1]) j=ne[j];
        //如果不行可以换到next数组
        if(q[i]==q[j+1]) j++;
        //成功了就加1
        ne[i]=j;
        //对应其下标
    }
    //j表示匹配成功的长度,因为刚开始还未开始匹配,所以长度为0
    for(int i=1,j=0;i<=m;i++)
    {
        while(j&&s[i]!=q[j+1]) j=ne[j];
        //如果匹配不成功,则换到j对应的next数组中的值
        if(s[i]==q[j+1]) j++;
        //匹配成功了,那么j就加1,继续后面的匹配
        if(j==n)//如果长度等于n了,说明已经完全匹配上去了
        {
            printf("%d ",i-j);
            //因为题目中的下标从0开始,所以i-j不用+1;
            j=ne[j];
            //为了观察其后续是否还能跟S数组后面的数配对成功
        }
    }
    return 0;
}
相关文章
|
5天前
|
存储 机器学习/深度学习
【数据结构】二叉树全攻略,从实现到应用详解
本文介绍了树形结构及其重要类型——二叉树。树由若干节点组成,具有层次关系。二叉树每个节点最多有两个子树,分为左子树和右子树。文中详细描述了二叉树的不同类型,如完全二叉树、满二叉树、平衡二叉树及搜索二叉树,并阐述了二叉树的基本性质与存储方式。此外,还介绍了二叉树的实现方法,包括节点定义、遍历方式(前序、中序、后序、层序遍历),并提供了多个示例代码,帮助理解二叉树的基本操作。
34 13
【数据结构】二叉树全攻略,从实现到应用详解
|
6天前
|
存储 Java 索引
【数据结构】链表从实现到应用,保姆级攻略
本文详细介绍了链表这一重要数据结构。链表与数组不同,其元素在内存中非连续分布,通过指针连接。Java中链表常用于需动态添加或删除元素的场景。文章首先解释了单向链表的基本概念,包括节点定义及各种操作如插入、删除等的实现方法。随后介绍了双向链表,说明了其拥有前后两个指针的特点,并展示了相关操作的代码实现。最后,对比了ArrayList与LinkedList的不同之处,包括它们底层实现、时间复杂度以及适用场景等方面。
27 10
【数据结构】链表从实现到应用,保姆级攻略
|
2天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
3天前
|
Java
【数据结构】栈和队列的深度探索,从实现到应用详解
本文介绍了栈和队列这两种数据结构。栈是一种后进先出(LIFO)的数据结构,元素只能从栈顶进行插入和删除。栈的基本操作包括压栈、出栈、获取栈顶元素、判断是否为空及获取栈的大小。栈可以通过数组或链表实现,并可用于将递归转化为循环。队列则是一种先进先出(FIFO)的数据结构,元素只能从队尾插入,从队首移除。队列的基本操作包括入队、出队、获取队首元素、判断是否为空及获取队列大小。队列可通过双向链表或数组实现。此外,双端队列(Deque)支持两端插入和删除元素,提供了更丰富的操作。
10 0
【数据结构】栈和队列的深度探索,从实现到应用详解
|
10天前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
14天前
|
算法 C++
A : DS串应用–KMP算法
这篇文章提供了KMP算法的C++实现,包括计算模式串的next数组和在主串中查找模式串位置的函数,用于演示KMP算法的基本应用。
|
17天前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
41 1
|
2天前
|
机器学习/深度学习 算法 Python
群智能算法:深入解读人工水母算法:原理、实现与应用
近年来,受自然界生物行为启发的优化算法备受关注。人工水母算法(AJSA)模拟水母在海洋中寻找食物的行为,是一种新颖的优化技术。本文详细解读其原理及实现步骤,并提供代码示例,帮助读者理解这一算法。在多模态、非线性优化问题中,AJSA表现出色,具有广泛应用前景。
|
22天前
|
数据采集 搜索推荐 算法
【高手进阶】Java排序算法:从零到精通——揭秘冒泡、快速、归并排序的原理与实战应用,让你的代码效率飙升!
【8月更文挑战第21天】Java排序算法是编程基础的重要部分,在算法设计与分析及实际开发中不可或缺。本文介绍内部排序算法,包括简单的冒泡排序及其逐步优化至高效的快速排序和稳定的归并排序,并提供了每种算法的Java实现示例。此外,还探讨了排序算法在电子商务、搜索引擎和数据分析等领域的广泛应用,帮助读者更好地理解和应用这些算法。
15 0
|
22天前
|
机器学习/深度学习 数据采集 算法
随机森林算法应用
8月更文挑战第20天