【MATLAB第54期】基于LSTM长短期记忆网络的多输入多输出滑动窗口回归预测模型

简介: 往期文章提到了对单列时间序列数据进行滑动窗口处理的思路,本文介绍如何对多输入多输出数据进行滑动窗口的思路。198行(代表198天),21列数据,其中前19列为变量,第20-21列为因变量。滑动窗口尺寸为7,即可认为前7天的变量作为输入,第7天的因变量作为输出。而样本数量也从原来的198变为192 ,因为前6组变量数据作为了历史样本。则输入的一组样本矩阵结构由20×1变成 20×7。往期第13期已实现多输入单输出滑动窗口回归预测。​输入数据样本 19×198。​转变后 192×19×7。

【MATLAB第54期】基于LSTM长短期记忆网络的多输入多输出滑动窗口回归预测模型

往期第13期已实现多输入单输出滑动窗口回归预测
本次在此代码基础上,新增多输出滑动窗口功能。
多输入单输出滑动窗口回归预测

一、实现效果

往期文章提到了对单列时间序列数据进行滑动窗口处理的思路,本文介绍如何对多输入多输出数据进行滑动窗口的思路。实现效果如下:

1.训练过程:
2023-07-09_173036.png

2.训练集拟合效果:
2023-07-09_173243.png

训练集输出变量1数据的RMSE为:0.087981
训练集输出变量1数据的MAPE为:-0.90458
训练集输出变量1数据的MAE为:0.066594
训练集输出变量1数据的R2为:0.21599
训练集输出变量2数据的RMSE为:0.98063
训练集输出变量2数据的MAPE为:0.034358
训练集输出变量2数据的MAE为:0.77383
训练集输出变量2数据的R2为:0.52585

2023-07-09_173339.png


3.测试集拟合效果:

2023-07-09_173408.png

测试集输出变量1数据的RMSE为:0.10677
测试集输出变量1数据的MAPE为:-0.88689
测试集输出变量1数据的MAE为:0.065214
测试集输出变量1数据的R2为:0.030359
测试集输出变量2数据的RMSE为:1.1881
测试集输出变量2数据的MAPE为:0.053303
测试集输出变量2数据的MAE为:0.99446
测试集输出变量2数据的R2为:0.31222

2023-07-09_173440.png

二、数据设置:

198行(代表198天),21列数据,其中前19列为变量,第20-21列为因变量。
前80%数据训练,后20%数据测试
(因变量数量可以更改)

三、滑动窗口处理:

滑动窗口尺寸为7,即可认为前7天的变量作为输入,第7天的因变量作为输出。
则输入的一组样本矩阵结构由20×1变成 20×7
而样本数量也从原来的198变为192 ,因为前6组变量数据作为了历史样本
​输入数据样本 19×198
​转变后 192×19×7
输出数据样本 2×198
​转变后 192×2

四、代码获取

后台私信回复“54期”可获得下载链接。

相关文章
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
1月前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
139 13
|
1月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
5月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
5月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
231 2
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
RNN、LSTM、GRU神经网络构建人名分类器(三)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
7月前
|
机器学习/深度学习 数据采集
RNN、LSTM、GRU神经网络构建人名分类器(一)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
7月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
127 6