【MATLAB第54期】基于LSTM长短期记忆网络的多输入多输出滑动窗口回归预测模型

简介: 往期文章提到了对单列时间序列数据进行滑动窗口处理的思路,本文介绍如何对多输入多输出数据进行滑动窗口的思路。198行(代表198天),21列数据,其中前19列为变量,第20-21列为因变量。滑动窗口尺寸为7,即可认为前7天的变量作为输入,第7天的因变量作为输出。而样本数量也从原来的198变为192 ,因为前6组变量数据作为了历史样本。则输入的一组样本矩阵结构由20×1变成 20×7。往期第13期已实现多输入单输出滑动窗口回归预测。​输入数据样本 19×198。​转变后 192×19×7。

【MATLAB第54期】基于LSTM长短期记忆网络的多输入多输出滑动窗口回归预测模型

往期第13期已实现多输入单输出滑动窗口回归预测
本次在此代码基础上,新增多输出滑动窗口功能。
多输入单输出滑动窗口回归预测

一、实现效果

往期文章提到了对单列时间序列数据进行滑动窗口处理的思路,本文介绍如何对多输入多输出数据进行滑动窗口的思路。实现效果如下:

1.训练过程:
2023-07-09_173036.png

2.训练集拟合效果:
2023-07-09_173243.png

训练集输出变量1数据的RMSE为:0.087981
训练集输出变量1数据的MAPE为:-0.90458
训练集输出变量1数据的MAE为:0.066594
训练集输出变量1数据的R2为:0.21599
训练集输出变量2数据的RMSE为:0.98063
训练集输出变量2数据的MAPE为:0.034358
训练集输出变量2数据的MAE为:0.77383
训练集输出变量2数据的R2为:0.52585

2023-07-09_173339.png


3.测试集拟合效果:

2023-07-09_173408.png

测试集输出变量1数据的RMSE为:0.10677
测试集输出变量1数据的MAPE为:-0.88689
测试集输出变量1数据的MAE为:0.065214
测试集输出变量1数据的R2为:0.030359
测试集输出变量2数据的RMSE为:1.1881
测试集输出变量2数据的MAPE为:0.053303
测试集输出变量2数据的MAE为:0.99446
测试集输出变量2数据的R2为:0.31222

2023-07-09_173440.png

二、数据设置:

198行(代表198天),21列数据,其中前19列为变量,第20-21列为因变量。
前80%数据训练,后20%数据测试
(因变量数量可以更改)

三、滑动窗口处理:

滑动窗口尺寸为7,即可认为前7天的变量作为输入,第7天的因变量作为输出。
则输入的一组样本矩阵结构由20×1变成 20×7
而样本数量也从原来的198变为192 ,因为前6组变量数据作为了历史样本
​输入数据样本 19×198
​转变后 192×19×7
输出数据样本 2×198
​转变后 192×2

四、代码获取

后台私信回复“54期”可获得下载链接。

相关文章
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
75 4
|
5月前
|
机器学习/深度学习 存储 自然语言处理
程序与技术分享:DeepMemoryNetwork深度记忆网络
程序与技术分享:DeepMemoryNetwork深度记忆网络
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
4月前
|
网络协议 算法 程序员
提高网络稳定性的关键:TCP滑动窗口与拥塞控制解析
**TCP可靠传输与拥塞控制概要:** 小米讲解TCP如何确保数据可靠性。TCP通过分割数据、编号段、校验和、流量控制(滑动窗口)和拥塞控制(慢开始、拥塞避免、快重传、快恢复)保证数据安全传输。拥塞控制动态调整窗口大小,防止网络过载,提升效率。当连续收到3个相同ACK时执行快重传,快恢复避免剧烈波动。关注“软件求生”获取更多技术内容。
138 4
提高网络稳定性的关键:TCP滑动窗口与拥塞控制解析
|
3月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
150 2
|
5月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
109 6
|
4月前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。
|
6天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第40天】在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术以及安全意识等方面的知识,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和建议,以保护个人和组织的信息安全。
29 6

热门文章

最新文章

下一篇
无影云桌面