Pandas入门指南:Python中的数据处理与分析

简介: Python的Pandas库是数据科学领域中非常重要的一个库,它使数据清洗和分析工作变得更快更简单。Pandas结合了NumPy的高性能数组计算功能以及电子表格和关系型数据库(如SQL)的灵活数据处理能力。

Python的Pandas库是数据科学领域中非常重要的一个库,它使数据清洗和分析工作变得更快更简单。Pandas结合了NumPy的高性能数组计算功能以及电子表格和关系型数据库(如SQL)的灵活数据处理能力。

一、Pandas的数据结构

Pandas主要有两种数据结构:SeriesDataFrame

1. Series

Series是一种类似于一维数组的对象,它由一组数据和一组与之相关的数据标签(即索引)组成。

import pandas as pd

s = pd.Series([1, 3, 5, np.nan, 6, 8])
print(s)

2. DataFrame

DataFrame是一种二维的表格型数据结构,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。

import pandas as pd

data = {
   'Country': ['Belgium', 'India', 'Brazil'],
        'Capital': ['Brussels', 'New Delhi', 'Brasília'],
        'Population': [11190846, 1303171035, 207847528]}

df = pd.DataFrame(data, columns=["Country", "Capital", "Population"])
print(df)

二、数据读取与写入

Pandas提供了一些用于将表格型数据读取为DataFrame对象的函数,支持多种格式的数据,如csv、excel、json、html、sql等。

import pandas as pd

# 从CSV文件中读取数据
df = pd.read_csv('file.csv')

# 将数据写入CSV文件中
df.to_csv('file.csv')

三、数据选择与操作

Pandas提供了多种方式进行数据的选择与操作。

import pandas as pd

# 创建一个数据集
data = {
   'Name': ['Tom', 'Nick', 'John', 'Tom'],
        'Age': [20, 21, 19, 20],
        'Country':['US', 'UK', 'US', 'UK']}

df = pd.DataFrame(data)

# 选择'Name'列
df['Name']

# 选择第0行
df.iloc[0]

# 选择满足条件的行
df[df.Age > 20]

# 对'Age'列进行求和
df['Age'].sum()

# 对'Country'列进行计数
df['Country'].value_counts()

Pandas的功能远不止这些,还包括合并、分组、缺失数据处理、数据透视表等高级功能,为数据处理和分析提供了强大的工具。

相关文章
|
18天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
111 70
|
16天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
20天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
121 68
|
16天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
92 36
|
10天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
54 15
|
14天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
71 18
|
18天前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
17天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
36 7
|
19天前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
34 5
|
17天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
43 3