【信道估计】基于LS和MMSE算法导频信道估计(误差率对比)附Matlab代码

简介: 【信道估计】基于LS和MMSE算法导频信道估计(误差率对比)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

基于最小二乘(Least Squares, LS)和最小均方误差(Minimum Mean Square Error, MMSE)的导频信道估计是常用的信道估计方法之一,用于估计无线通信系统中的信道响应。下面将介绍LS和MMSE算法的基本原理和步骤。

  1. 最小二乘(LS)算法: a. 发送导频序列:在发送端,周期性地插入已知导频序列到待传输的数据序列中。 b. 接收导频序列:接收端接收到包含导频序列的信号,并进行采样和解调。 c. 估计信道响应:使用接收到的导频序列和已知导频序列进行相关运算,得到信道响应的估计值。 d. 插值和外推:对于非导频位置,可以通过插值或外推方法获得信道响应的估计值。
  2. 最小均方误差(MMSE)算法: a. 发送导频序列:同样在发送端周期性地插入已知导频序列到待传输的数据序列中。 b. 接收导频序列:接收端接收到包含导频序列的信号,并进行采样和解调。 c. 估计协方差矩阵:使用接收到的导频序列计算信道响应的协方差矩阵。 d. 计算MMSE估计:通过计算信道响应的协方差矩阵的逆矩阵与接收导频序列的乘积,得到信道响应的MMSE估计值。

LS算法是一种简单直接的信道估计方法,但在噪声较大或导频序列有限的情况下,其估计精度较低。而MMSE算法考虑了信道噪声的影响,可以提供更准确的信道估计结果。

需要注意的是,LS和MMSE算法都需要已知导频序列,因此在实际应用中,需要事先设计好导频序列并在发送端进行插入。此外,为了提高信道估计的准确性,可以采用多径信道模型、时频域插值等技术进行进一步优化。

⛄ 代码

%====================================================%  Cobayashi Laboratory , Mie University, Japan%%                   Last Modified by  tao,2001/05/17 %====================================================function out = f_GetPoints(M)BPSKTable = f_EnGray(2);BPSKTable1 = [1+0i -1+0i];QPSKTable = f_EnGray(4);QPSKTable1 = [1 -1i 1i -1];QAM8Table7 = f_EnGray(8);QAM8Table = [    ...      -1 + 1j*-1    ...      -3 + 1j*0     ...      -1 + 1j*1     ...       0 + 1j*3     ...       1 + 1j*-1    ...       0 + 1j*-3    ...       1 + 1j*1     ...       3 + 1j*0  ]* sqrt(4/11);QAM8Table0 = [    ...      3  + 1j   ...      1  + 1j    ...      -3 + 1j   ...      -1 + 1j   ...      3  + 1j*-1 ...      1  + 1j*-1 ...      -3 + 1j*-1   ...      -1 + 1j*-1];QAM8Table6 = [    ...      2          ...      2+2j       ...      -2+2j  ...      2j         ...      2+1j*-2 ...      1j*-2      ...      -2         ...      -2 + 1j*-2];QAM8Table5 = [    ...      3+1j*1      ...      1+1j*3      ...      -3+1j*1      ...      -1+1j*3      ...      3+1j*-1      ...      1+1j*-3      ...      -3+1j*-1      ...      -1+1j*-3 ];QAM8Table4 = [    ...      1+1j*1      ...      1+1j*-1      ...      -1+1j*1      ...      3+1j*-1      ...      -3+1j*1      ...      -1+1j*-3      ...      1+1j*3      ...      -1+1j*-1 ];QAM8Table3 = [    ...      3          ...      1+1j       ...      -1 + 1j  ...      3j         ...      1 + 1j*-1 ...      1j*-3      ...      -3         ...      -1 + 1j*-1];QAM8Table2 = [    ...      1          ...      0.5+1j*0.5       ...      -0.5 + 1j*0.5  ...      1j         ...      0.5 + 1j*-0.5 ...      1j*-1      ...      -1         ...      -0.5 + 1j*-0.5];QAM8Table1 = [    ...      1          ...      1+1j       ...      -1 + 1j  ...      1j         ...      1 + 1j*-1 ...      1j*-1      ...      -1         ...      -1 + 1j*-1];QAM16Table = f_EnGray(16);QAM16Table1 = [ ...      1  + 1j*1 ...      1  + 1j*3 ...      3  + 1j*1 ...      3  + 1j*3 ...      -1 + 1j*1 ...      -1 + 1j*3 ...      -3 + 1j*1 ...      -3 + 1j*3 ...      1 + 1j*-1 ...      1 + 1j*-3 ...      3  + 1j*-1 ...      3  + 1j*-3 ...      -1 + 1j*-1 ...      -1 + 1j*-3 ...      -3 + 1j*-1 ...      -3 + 1j*-3];QAM32Table2 = f_EnGray(32);QAM32Table = [   ...       1 + 1j*1  ...       3 + 1j*1  ...       3 + 1j*5  ...       5 + 1j*1  ...       1 + 1j*3  ...       3 + 1j*3  ...       1 + 1j*5  ...       5 + 1j*3  ...       1 + 1j*-1  ...       1 + 1j*-3  ...       5 + 1j*-3  ...       1 + 1j*-5  ...       3 + 1j*-1  ...       3 + 1j*-3  ...       5 + 1j*-1  ...       3 + 1j*-5  ...       -1 + 1j*1  ...       -1 + 1j*3  ...       -5 + 1j*3  ...       -1 + 1j*5  ...       -3 + 1j*1  ...       -3 + 1j*3  ...       -5 + 1j*1  ...       -3 + 1j*5  ...       -1 + 1j*-1  ...       -3 + 1j*-1  ...       -3 + 1j*-5  ...       -5 + 1j*-1  ...       -1 + 1j*-3  ...       -3 + 1j*-3  ...       -1 + 1j*-5  ...       -5 + 1j*-3  ...   ] * sqrt(1/10);QAM32Table1 = [   ...      -3 + 1j*5  ...      -5 + 1j*1  ...      1 + 1j*5  ...      5 + 1j*3  ...      3 + 1j*-5  ...      5 + 1j*-1  ...      -1 + 1j*-5  ...      -5 + 1j*-3  ...      1 + 1j*1  ...      -1 + 1j*5  ...      5 + 1j*1  ...      1 + 1j*-1  ...      -1 + 1j*-1  ...      1 + 1j*-5  ...      -5 + 1j*-1  ...      -1 + 1j*1  ...      -3 + 1j*-3  ...      -1 + 1j*-3  ...      -3 + 1j*1  ...      -3 + 1j*3  ...      3 + 1j*3  ...      1 + 1j*3  ...      3 + 1j*-1  ...      3 + 1j*-3  ...      5 + 1j*-3  ...      3 + 1j*1  ...      1 + 1j*-3  ...      -3 + 1j*-5  ...      -5 + 1j*3  ...      -3 + 1j*-1  ...      -1 + 1j*3  ...      3 + 1j*5  ...   ];QAM64Table = f_EnGray(64);QAM64Table1 = [ ...      1  + 1j*1 ...      1  + 1j*3 ...      3  + 1j*1 ...      3  + 1j*3 ...      7  + 1j*1 ...      5  + 1j*1 ...      7  + 1j*3 ...      5  + 1j*3 ...      1  + 1j*7 ...      3  + 1j*7 ...      1  + 1j*5 ...      3  + 1j*5 ...      7  + 1j*7 ...      5  + 1j*7 ...      7  + 1j*5 ...      5  + 1j*5 ...      1  + 1j*-1 ...      1  + 1j*-3 ...      3  + 1j*-1 ...      3  + 1j*-3 ...      7  + 1j*-1 ...      5  + 1j*-1 ...      7  + 1j*-3 ...      5  + 1j*-3 ...      1  + 1j*-7 ...      3  + 1j*-7 ...      1  + 1j*-5 ...      3  + 1j*-5 ...      7  + 1j*-7 ...      5  + 1j*-7 ...      7  + 1j*-5 ...      5  + 1j*-5 ...      -1+ 1j*1 ...      -1+ 1j*3 ...      -3+ 1j*1 ...      -3+ 1j*3 ...      -7+ 1j*1 ...      -5+ 1j*1 ...      -7+ 1j*3 ...      -5+ 1j*3 ...      -1+ 1j*7 ...      -3+ 1j*7 ...      -1+ 1j*5 ...      -3+ 1j*5 ...      -7+ 1j*7 ...      -5+ 1j*7 ...      -7+ 1j*5 ...      -5+ 1j*5 ...      -1+ 1j*-1 ...      -1+ 1j*-3 ...      -3+ 1j*-1 ...      -3+ 1j*-3 ...      -7+ 1j*-1 ...      -5+ 1j*-1 ...      -7+ 1j*-3 ...      -5+ 1j*-3 ...      -1+ 1j*-7 ...      -3+ 1j*-7 ...      -1+ 1j*-5 ...      -3+ 1j*-5 ...      -7+ 1j*-7 ...      -5+ 1j*-7 ...      -7+ 1j*-5 ...      -5+ 1j*-5];QAM128Table1 = f_EnGray(128);QAM128Table = [ ...      1 + 1j*1  ...      3 + 1j*1  ...      1 + 1j*3  ...      3 + 1j*3  ...      7 + 1j*1  ...      5 + 1j*1  ...      7 + 1j*3  ...      5 + 1j*3  ...      7 + 1j*9  ...      5 + 1j*9  ...      7 + 1j*11 ...      5 + 1j*11 ...      9 + 1j*1  ...      11 + 1j*1 ...      9 + 1j*3  ...      11 + 1j*3 ...      1 + 1j*7  ...      3 + 1j*7  ...      1 + 1j*5  ...      3 + 1j*5  ...      7 + 1j*7  ...      5 + 1j*7  ...      7 + 1j*5  ...      5 + 1j*5  ...      1 + 1j*9  ...      3 + 1j*9  ...      1 + 1j*11 ...      3 + 1j*11 ...      9 + 1j*7  ...      11 + 1j*7 ...      9 + 1j*5  ...      11 + 1j*5 ...      -1 + 1j*1  ...      -1 + 1j*3  ...      -3 + 1j*1  ...      -3 + 1j*3  ...      -1 + 1j*7  ...      -1 + 1j*5  ...      -3 + 1j*7  ...      -3 + 1j*5  ...      -9 + 1j*7  ...      -9 + 1j*5  ...      -11 + 1j*7 ...      -11 + 1j*5 ...      -1 + 1j*9  ...      -1 + 1j*11 ...      -3 + 1j*9  ...      -3 + 1j*11 ...      -7 + 1j*1  ...      -7 + 1j*3  ...      -5 + 1j*1  ...      -5 + 1j*3  ...      -7 + 1j*7  ...      -7 + 1j*5  ...      -5 + 1j*7  ...      -5 + 1j*5  ...      -9 + 1j*1  ...      -9 + 1j*3  ...      -11 + 1j*1 ...      -11 + 1j*3 ...      -7 + 1j*9  ...      -7 + 1j*11 ...      -5 + 1j*9  ...      -5 + 1j*11 ...      -1 + 1j*-1  ...      -3 + 1j*-1  ...      -1 + 1j*-3  ...      -3 + 1j*-3  ...      -7 + 1j*-1  ...      -5 + 1j*-1  ...      -7 + 1j*-3  ...      -5 + 1j*-3  ...      -7 + 1j*-9  ...      -5 + 1j*-9  ...      -7 + 1j*-11 ...      -5 + 1j*-11 ...      -9 + 1j*-1  ...      -11 + 1j*-1 ...      -9 + 1j*-3  ...      -11 + 1j*-3 ...      -1 + 1j*-7  ...      -3 + 1j*-7  ...      -1 + 1j*-5  ...      -3 + 1j*-5  ...      -7 + 1j*-7  ...      -5 + 1j*-7  ...      -7 + 1j*-5  ...      -5 + 1j*-5  ...      -1 + 1j*-9  ...      -3 + 1j*-9  ...      -1 + 1j*-11 ...      -3 + 1j*-11 ...      -9 + 1j*-7  ...      -11 + 1j*-7 ...      -9 + 1j*-5  ...      -11 + 1j*-5 ...      1 + 1j*-1  ...      1 + 1j*-3  ...      3 + 1j*-1  ...      3 + 1j*-3  ...      1 + 1j*-7  ...      1 + 1j*-5  ...      3 + 1j*-7  ...      3 + 1j*-5  ...      9 + 1j*-7  ...      9 + 1j*-5  ...      11 + 1j*-7 ...      11 + 1j*-5 ...      1 + 1j*-9  ...      1 + 1j*-11 ...      3 + 1j*-9  ...      3 + 1j*-11 ...      7 + 1j*-1  ...      7 + 1j*-3  ...      5 + 1j*-1  ...      5 + 1j*-3  ...      7 + 1j*-7  ...      7 + 1j*-5  ...      5 + 1j*-7  ...      5 + 1j*-5  ...      9 + 1j*-1  ...      9 + 1j*-3  ...      11 + 1j*-1 ...      11 + 1j*-3 ...      7 + 1j*-9  ...      7 + 1j*-11 ...      5 + 1j*-9  ...      5 + 1j*-11] * sqrt(1/41);QAM256Table = f_EnGray(256);switch M,case 0,   table = [0];case 2,   table = BPSKTable;case 4,   table = QPSKTable;case 8,   table = QAM8Table;case 16,  table = QAM16Table;case 32,  table = QAM32Table;case 64,  table = QAM64Table;case 128, table = QAM128Table;case 256, table = QAM256Table;otherwise, error('No such MQAM!');endout = table;

⛄ 运行结果

⛄ 参考文献

[1] 朱竞.基于导频的MB-LSF算法的OFDM系统信道估计研究[D].华东理工大学,2014.

[2] 王宏宇.快时变信道下OFDM系统频率同步与信道估计技术研究[D].西南交通大学,2014.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长
相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。

热门文章

最新文章