Python交通标志识别系统,TensorFlow+Django网页+深度学习模型+卷积网络【完整代码】

简介: 使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django,开发网页端操作平台,实现用户上传一张图片识别其名称

一、介绍

使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django,开发网页端操作平台,实现用户上传一张图片识别其名称。

二、效果展示

1683898509301-225923b1-618c-4b05-91ac-043f2fbc0495

1683898514345-76366f7c-4723-496b-b3f2-0218292fcfb8

三、演示视频

视频+完整代码:https://www.yuque.com/ziwu/yygu3z/negbi656d7r4b0vi

四、TensorFlow

TensorFlow是一个开源的机器学习框架,由Google开发和维护。它被广泛应用于构建和训练各种深度学习模型,包括神经网络。TensorFlow提供了一个灵活而高效的编程接口,使开发者能够轻松地实现和部署复杂的机器学习算法。
TensorFlow的核心是计算图,它是一个由节点和边组成的数据流图,表示了计算任务的整体结构。开发者可以使用TensorFlow的API来定义计算图中的节点和边,表示数据流和计算操作之间的依赖关系。
TensorFlow支持多种编程语言,包括Python、C++和Java,使得开发者能够在自己熟悉的语言中使用该框架。它提供了丰富的工具和库,用于数据处理、模型构建、模型训练和模型部署。开发者可以利用这些工具和库,快速构建和训练各种类型的机器学习模型,包括图像识别、自然语言处理和推荐系统等。
TensorFlow还支持分布式计算,允许将计算任务分布到多个设备或计算节点上进行并行处理。这使得TensorFlow能够有效地处理大规模的数据和复杂的模型。
除了核心功能之外,TensorFlow还提供了许多扩展库和工具,用于可视化模型训练过程、模型优化和调试。此外,TensorFlow还支持与其他常用的机器学习库和框架进行集成,如Keras、Scikit-learn和TensorBoard。
综上所述,TensorFlow是一个强大而灵活的机器学习框架,提供了丰富的功能和工具,帮助开发者构建、训练和部署高效的机器学习模型。它在学术界和工业界都得到了广泛的应用,并且积极的开发者社区不断推动其发展和创新。

五、Django

Django是一个开源的高级Web应用程序框架,使用Python编写,并遵循了MVC(模型-视图-控制器)的设计模式。它提供了一组强大的工具和库,用于快速构建复杂而可扩展的Web应用程序。

Django的设计目标是简化开发过程,提供开箱即用的功能和组件,以及清晰的项目结构。它内置了许多常见的Web开发任务,如URL路由、表单处理、用户认证和管理后台。这使得开发者能够专注于业务逻辑的实现,而无需重复编写常见的基础代码。

Django的核心组件之一是ORM(对象关系映射),它允许开发者通过Python代码来定义数据库模型,而无需直接与数据库交互。ORM提供了简洁的API,用于执行数据库查询、插入、更新和删除操作,从而实现了数据持久化的功能。另一个重要的组件是模板系统,它允许开发者将HTML页面与动态数据进行结合,生成最终的Web页面。模板系统提供了丰富的模板标签和过滤器,用于处理和展示数据,并支持模板继承和组件化的开发方式,提高了代码的可重用性和维护性。

Django还提供了丰富的扩展和插件生态系统,允许开发者轻松集成第三方库和工具,以满足特定项目的需求。同时,Django也支持与其他Web服务和技术的集成,如RESTful API、缓存系统、消息队列和搜索引擎等。

六、相关代码

import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
import numpy as np

# 加载预训练的ResNet50模型
model = ResNet50(weights='imagenet')

# 加载图像
img_path = 'path_to_your_image.jpg'
img = image.load_img(img_path, target_size=(224, 224))

# 预处理图像
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

# 使用ResNet50进行预测
predictions = model.predict(x)

# 解码预测结果
decoded_predictions = decode_predictions(predictions, top=3)[0]

# 打印预测结果
for pred in decoded_predictions:
    print(f'{pred[1]}: {pred[2]*100:.2f}%')
目录
相关文章
|
18天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
207 55
|
28天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
153 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
29天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
39 4
基于Python深度学习的果蔬识别系统实现
|
15天前
|
数据采集 监控 安全
公司网络监控软件:Zig 语言底层优化保障系统高性能运行
在数字化时代,Zig 语言凭借出色的底层控制能力和高性能特性,为公司网络监控软件的优化提供了有力支持。从数据采集、连接管理到数据分析,Zig 语言确保系统高效稳定运行,精准处理海量网络数据,保障企业信息安全与业务连续性。
37 4
|
25天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
111 5
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
84 16
|
17天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
77 19
|
17天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
69 7
|
28天前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。
|
28天前
|
机器学习/深度学习 数据采集 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的基本原理、优势以及面临的主要挑战。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率,同时指出了数据质量、模型泛化能力和计算资源等关键因素对性能的影响。