使用Streamlit和OpenAI API构建视频摘要

简介: 本文提供了使用Streamlit和OpenAI创建的视频摘要应用程序的概述。该程序为视频的每个片段创建简洁的摘要,并总结视频的完整内容。

要运行应用程序,需要安装以下依赖项:

  • Python(3.7或更高版本)
  • Streamlit
  • OpenAI API密钥
  • llama_index
  • youtube_transcript_api
  • html2image
  • langchain

搭建环境

首先,需要设置我们的开发环境,可以使用以下代码片段将API密钥设置为环境变量:

 import os
 os.environ["OPENAI_API_KEY"] = '{your_Api_Key}'

然后导入所有的包

 from llama_index import StorageContext, load_index_from_storage
 from llama_index import VectorStoreIndex
 import streamlit as st
 from llama_index import download_loader
 from llama_index import GPTVectorStoreIndex
 from llama_index import LLMPredictor, GPTVectorStoreIndex, PromptHelper, ServiceContext
 from langchain import OpenAI
 from langchain.chat_models import ChatOpenAI

 from youtube_transcript_api import YouTubeTranscriptApi
 from youtube_transcript_api.formatters import JSONFormatter
 import json
 import datetime
 from html2image import Html2Image

处理用户输入和YouTube视频检索

以下代码是Streamlit的按钮和事件:我们提示用户输入一个YouTube视频链接。使用st.text_input捕获输入,并将其存储在youtube_link变量中。按钮的名字为“Summarize!”,当单击该按钮时将触发我们的处理过程。下面是相关的代码片段:

 youtube_link = st.text_input("Youtube link:")
 st.button("Summarize!", on_click=send_click)

获取视频文本和预处理

使用YouTubeTranscriptApi可以获得视频文本。然后将转录本格式化为JSON并保存到文件中。然后再使用Html2Image库捕获YouTube视频的屏幕截图:

 srt = YouTubeTranscriptApi.get_transcript(st.session_state.video_id, languages=['en'])
 formatter = JSONFormatter()
 json_formatted = formatter.format_transcript(srt)
 with open(transcript_file, 'w') as f:
     f.write(json_formatted)

 hti = Html2Image()
 hti.screenshot(url=f"https://www.youtube.com/watch?v={st.session_state.video_id}", save_as=youtube_img)

建立索引和查询语言模型

下面就是对上面获取文本的处理,使用llama_index库中的VectorStoreIndex类创建索引。索引是根据视频文本构建的,另外还定义了LLMPredictor和ServiceContext来处理语言模型交互。下面是相关的代码片段:

 documents = loader.load_data()

 # define LLM
 llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", max_tokens=500))
 service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor)

 # Create and load the index
 index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context)
 index.storage_context.persist()

 # Load the index from storage
 storage_context = StorageContext.from_defaults(persist_dir=index_file)
 index = load_index_from_storage(storage_context, service_context=service_context)

 # Create a query engine for the index
 query_engine = index.as_query_engine()

生成视频摘要

这一步遍历视频文本并为视频的每个部分生成摘要。通过使用query_engine从视频部分构造的提示来查询语言模型。生成的摘要存储在section_response变量中:

 section_response = ''

 for d in transcript:
     # ...

     if d["start"] <= (section_start_s + 300) and transcript.index(d) != len(transcript) - 1:
         section_texts += ' ' + d["text"]
     else:
         end_text = d["text"]

         prompt = f"summarize this article from \"{start_text}\" to \"{end_text}\", limited to 100 words, start with \"This section of video\""
         response = query_engine.query(prompt)

         start_time = str(datetime.timedelta(seconds=section_start_s))
         end_time = str(datetime.timedelta(seconds=int(d['start'])))

         section_start_s += 300
         start_text = d["text"]
         section_texts = ''

         section_response += f"**{start_time} - {end_time}:**\n\r{response}\n\r"

生成最终总结

在处理完所有视频片段后,,生成整个视频的最终摘要。生成的摘要存储在响应变量中:

 prompt = "Summarize this article of a video, start with \"This Video\", the article is: " + section_response
 response = query_engine.query(prompt)

显示结果

最后,我们使用streamlit显示生成的摘要和部分详细信息:

 st.subheader("Summary:")
 st.success(response, icon="🤖")

 with st.expander("Section Details: "):
     st.write(section_response)

 st.session_state.video_id = ''
 st.stop()

总结

本文演示了如何创建一个基于python的视频摘要程序。使用youtube_transcript_apto直接获取视频的文本,并通过OpenAI的语言模型来提供摘要。

作者没有个完整代码地址,所以有兴趣请与原文作者联系:

https://avoid.overfit.cn/post/a2ca634c772d4bcead5e2b72f3042b1e

作者:Abhijeetas

目录
相关文章
|
1月前
|
Go 开发工具
百炼-千问模型通过openai接口构建assistant 等 go语言
由于阿里百炼平台通义千问大模型没有完善的go语言兼容openapi示例,并且官方答复assistant是不兼容openapi sdk的。 实际使用中发现是能够支持的,所以自己写了一个demo test示例,给大家做一个参考。
|
16天前
|
人工智能 前端开发 API
OpenAI 12天发布会内容全纪录!一文快速回顾获知亮点信息,原文附发布会中文字幕视频
OpenAI 于12月5日宣布将举行为期12天的系列发布活动,期间每天发布一个产品或样品,包括备受期待的AI视频生成工具Sora和新的推理模型。本文将介绍这12天的发布会每日的发布内容和相关亮点信息。
229 82
|
1天前
|
搜索推荐 API 开发者
京东商品视频数据接口(JD.item_video)丨京东 API 接口指南
京东商品视频数据接口(JD.item_video)是京东开放平台提供的API,开发者可通过指定商品ID(num_iid)获取商品视频资源,用于丰富电商平台展示、提升用户体验。该接口适用于电商平台建设、商品推荐系统、市场研究与竞品分析及价格监测平台等场景,帮助用户更直观了解商品,提高购买转化率。示例代码展示了如何使用Python调用此接口并解析返回的JSON数据。
25 16
|
19天前
|
人工智能 数据可视化 JavaScript
NodeTool:AI 工作流可视化构建器,通过拖放节点设计复杂的工作流,集成 OpenAI 等多个平台
NodeTool 是一个开源的 AI 工作流可视化构建器,通过拖放节点的方式设计复杂的工作流,无需编码即可快速原型设计和测试。它支持本地 GPU 运行 AI 模型,并与 Hugging Face、OpenAI 等平台集成,提供模型访问能力。
95 14
NodeTool:AI 工作流可视化构建器,通过拖放节点设计复杂的工作流,集成 OpenAI 等多个平台
|
11天前
|
安全 API 数据安全/隐私保护
自学记录HarmonyOS Next DRM API 13:构建安全的数字内容保护系统
在完成HarmonyOS Camera API开发后,我深入研究了数字版权管理(DRM)技术。最新DRM API 13提供了强大的工具,用于保护数字内容的安全传输和使用。通过学习该API的核心功能,如获取许可证、解密内容和管理权限,我实现了一个简单的数字视频保护系统。该系统包括初始化DRM模块、获取许可证、解密视频并播放。此外,我还配置了开发环境并实现了界面布局。未来,随着数字版权保护需求的增加,DRM技术将更加重要。如果你对这一领域感兴趣,欢迎一起探索和进步。
72 18
|
2月前
|
JSON 缓存 JavaScript
深入浅出:使用Node.js构建RESTful API
在这个数字时代,API已成为软件开发的基石之一。本文旨在引导初学者通过Node.js和Express框架快速搭建一个功能完备的RESTful API。我们将从零开始,逐步深入,不仅涉及代码编写,还包括设计原则、最佳实践及调试技巧。无论你是初探后端开发,还是希望扩展你的技术栈,这篇文章都将是你的理想指南。
|
19天前
|
JSON 自然语言处理 Java
OpenAI API深度解析:参数、Token、计费与多种调用方式
随着人工智能技术的飞速发展,OpenAI API已成为许多开发者和企业的得力助手。本文将深入探讨OpenAI API的参数、Token、计费方式,以及如何通过Rest API(以Postman为例)、Java API调用、工具调用等方式实现与OpenAI的交互,并特别关注调用具有视觉功能的GPT-4o使用本地图片的功能。此外,本文还将介绍JSON模式、可重现输出的seed机制、使用代码统计Token数量、开发控制台循环聊天,以及基于最大Token数量的消息列表限制和会话长度管理的控制台循环聊天。
135 7
|
1月前
|
JSON JavaScript 前端开发
深入浅出Node.js:从零开始构建RESTful API
在数字化时代的浪潮中,后端开发作为连接用户与数据的桥梁,扮演着至关重要的角色。本文将引导您步入Node.js的奇妙世界,通过实践操作,掌握如何使用这一强大的JavaScript运行时环境构建高效、可扩展的RESTful API。我们将一同探索Express框架的使用,学习如何设计API端点,处理数据请求,并实现身份验证机制,最终部署我们的成果到云服务器上。无论您是初学者还是有一定基础的开发者,这篇文章都将为您打开一扇通往后端开发深层知识的大门。
49 12
|
2月前
|
监控 安全 API
深入浅出:构建高效RESTful API的最佳实践
在数字化时代,API已成为连接不同软件和服务的桥梁。本文将带你深入了解如何设计和维护一个高效、可扩展且安全的RESTful API。我们将从基础概念出发,逐步深入到高级技巧,让你能够掌握创建优质API的关键要素。无论你是初学者还是有经验的开发者,这篇文章都将为你提供实用的指导和启示。让我们一起探索API设计的奥秘,打造出色的后端服务吧!
|
2月前
|
JSON 缓存 测试技术
构建高效RESTful API的后端实践指南####
本文将深入探讨如何设计并实现一个高效、可扩展且易于维护的RESTful API。不同于传统的摘要概述,本节将直接以行动指南的形式,列出构建RESTful API时必须遵循的核心原则与最佳实践,旨在为开发者提供一套直接可行的实施框架,快速提升API设计与开发能力。 ####