【MATLAB第52期】基于MATLAB的高斯过程GPR超参数(sigma)自动优化算法 时间序列预测模型 五折交叉验证

简介: 使用GPR自动优化函数,对sigma进行自动寻优。一列时间序列数据 ,滑动窗口尺寸为15。适应度值log(1+loss)。

一、效果展示

2023-07-06_202404.png
2023-07-06_202417.png
2023-07-06_202320.png
2023-07-06_202329.png

二、优化思路

1.数据
一列时间序列数据 ,滑动窗口尺寸为15。
2.思路
使用GPR自动优化函数,对sigma进行自动寻优。
适应度值log(1+loss)。
迭代次数默认30.

三、代码展示

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  构造数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%%  划分训练集和测试集
temp = 1: 1: 922;

P_train = res(temp(1: 700), 1: 15)';
T_train = res(temp(1: 700), 16)';
M = size(P_train, 2);

P_test = res(temp(701: end), 1: 15)';
T_test = res(temp(701: end), 16)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%训练模型  这个是模型参数 ,运行较好地结果 
gprMdl= fitrgp(p_train,t_train,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',...
     struct('Optimizer','randomsearch'));%训练高斯过程模型 HyperparameterOptimizationOptions 五折交叉验证自动优化超参数sigma

%gprMdl = fitrgp(p_train,t_train,'Basis','None','KernelFunction','Exponential');
[t_sim1] = gprpre(gprMdl);
T_sim1=mapminmax('reverse',t_sim1, ps_output);%训练集拟合结果

[t_sim2,~,~] = predict(gprMdl,p_test);
T_sim2=mapminmax('reverse',t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);

%%  绘图
figure()
subplot(211)
plot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化后训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

subplot(212)
plot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化后测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2')^2 / norm(T_test -  mean(T_test ))^2;

disp(['优化后训练集数据的R2为:', num2str(R1)])
disp(['优化后测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['优化后训练集数据的MAE为:', num2str(mae1)])
disp(['优化后测试集数据的MAE为:', num2str(mae2)])

%  MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;

disp(['优化后训练集数据的MBE为:', num2str(mbe1)])
disp(['优化后测试集数据的MBE为:', num2str(mbe2)])

%% 优化前 Sigma = 0.5
%gprMdl1 = fitrgp(p_train,t_train,'Basis','None','KernelFunction','Exponential');
[t_sim11] = gprpre(gprMdl1);
T_sim11=mapminmax('reverse',t_sim11, ps_output);%训练集拟合结果
L1 = resubLoss(gprMdl1)%损失函数

[t_sim22,~,~] = predict(gprMdl1,p_test);
T_sim22=mapminmax('reverse',t_sim22, ps_output);

%%  均方根误差
error11 = sqrt(sum((T_sim11' - T_train).^2) ./ M);
error22 = sqrt(sum((T_sim22' - T_test ).^2) ./ N);

%%  绘图
figure()
subplot(211)
plot(1: M, T_train, 'r-', 1: M, T_sim11, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化前训练集预测结果对比'; ['RMSE=' num2str(error11)]};
title(string)
xlim([1, M])
grid

subplot(212)
plot(1: N, T_test, 'r-', 1: N, T_sim22, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化前测试集预测结果对比';['RMSE=' num2str(error22)]};
title(string)
xlim([1, N])
grid



%%  相关指标计算
%  R2
R11 = 1 - norm(T_train - T_sim11')^2 / norm(T_train - mean(T_train))^2;
R22 = 1 - norm(T_test -  T_sim22')^2 / norm(T_test -  mean(T_test ))^2;

disp(['优化前训练集数据的R2为:', num2str(R11)])
disp(['优化前测试集数据的R2为:', num2str(R22)])

%  MAE
mae11 = sum(abs(T_sim11' - T_train)) ./ M ;
mae22 = sum(abs(T_sim22' - T_test )) ./ N ;

disp(['优化前训练集数据的MAE为:', num2str(mae11)])
disp(['优化前测试集数据的MAE为:', num2str(mae22)])

%  MBE
mbe11 = sum(T_sim11' - T_train) ./ M ;
mbe22 = sum(T_sim22' - T_test ) ./ N ;

disp(['优化前训练集数据的MBE为:', num2str(mbe11)])
disp(['优化前测试集数据的MBE为:', num2str(mbe22)])
相关文章
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1月前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
27 14