UNet++详细解读(二)pytorch从头开始搭建UNet++

简介: UNet++详细解读(二)pytorch从头开始搭建UNet++

Unet++代码


网络架构

12.png

黑色部分是Backbone,是原先的UNet。


绿色箭头为上采样,蓝色箭头为密集跳跃连接。


绿色的模块为密集连接块,是经过左边两个部分拼接操作后组成的


Backbone


2个3x3的卷积,padding=1。

class VGGBlock(nn.Module):
    def __init__(self, in_channels, middle_channels, out_channels):
        super().__init__()
        self.relu = nn.ReLU(inplace=True)
        self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(middle_channels)
        self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)
    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        return out

上采样


图中的绿色箭头,上采样使用双线性插值。


双线性插值就是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值

13.png

torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None)

参数说明:


①size:可以用来指定输出空间的大小,默认是None;


②scale_factor:比例因子,比如scale_factor=2意味着将输入图像上采样2倍,默认是None;


③mode:用来指定上采样算法,有’nearest’、 ‘linear’、‘bilinear’、‘bicubic’、‘trilinear’,默认是’nearest’。上采样算法在本文中会有详细理论进行讲解;


④align_corners:如果True,输入和输出张量的角像素对齐,从而保留这些像素的值,默认是False。此处True和False的区别本文中会有详细的理论讲解;


⑤recompute_scale_factor:如果recompute_scale_factor是True,则必须传入scale_factor并且scale_factor用于计算输出大小。计算出的输出大小将用于推断插值的新比例。请注意,当scale_factor为浮点数时,由于舍入和精度问题,它可能与重新计算的scale_factor不同。如果recompute_scale_factor是False,那么size或scale_factor将直接用于插值。

class Up(nn.Module):
    def __init__(self):
        super().__init__()
        self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = torch.tensor([x2.size()[2] - x1.size()[2]])
        diffX = torch.tensor([x2.size()[3] - x1.size()[3]])
        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])
        x = torch.cat([x2, x1], dim=1)
        return x

下采样


图中的黑色箭头,采用的是最大池化。

self.pool = nn.MaxPool2d(2, 2)

深度监督


所示,该结构下有4个分支,可以分为两种模式。


精确模式:4个分支取平均值结果


快速模式:只选择一个分支,其余被剪枝

if self.deep_supervision:
   output1 = self.final1(x0_1)
   output2 = self.final2(x0_2)
   output3 = self.final3(x0_3)
   output4 = self.final4(x0_4)
   return [output1, output2, output3, output4]
else:
    output = self.final(x0_4)
     return output

网络架构代码

class NestedUNet(nn.Module):
    def __init__(self, num_classes=1, input_channels=1, deep_supervision=False, **kwargs):
        super().__init__()
        nb_filter = [32, 64, 128, 256, 512]
        self.deep_supervision = deep_supervision
        self.pool = nn.MaxPool2d(2, 2)
        self.up = Up()
        self.conv0_0 = VGGBlock(input_channels, nb_filter[0], nb_filter[0])
        self.conv1_0 = VGGBlock(nb_filter[0], nb_filter[1], nb_filter[1])
        self.conv2_0 = VGGBlock(nb_filter[1], nb_filter[2], nb_filter[2])
        self.conv3_0 = VGGBlock(nb_filter[2], nb_filter[3], nb_filter[3])
        self.conv4_0 = VGGBlock(nb_filter[3], nb_filter[4], nb_filter[4])
        self.conv0_1 = VGGBlock(nb_filter[0]+nb_filter[1], nb_filter[0], nb_filter[0])
        self.conv1_1 = VGGBlock(nb_filter[1]+nb_filter[2], nb_filter[1], nb_filter[1])
        self.conv2_1 = VGGBlock(nb_filter[2]+nb_filter[3], nb_filter[2], nb_filter[2])
        self.conv3_1 = VGGBlock(nb_filter[3]+nb_filter[4], nb_filter[3], nb_filter[3])
        self.conv0_2 = VGGBlock(nb_filter[0]*2+nb_filter[1], nb_filter[0], nb_filter[0])
        self.conv1_2 = VGGBlock(nb_filter[1]*2+nb_filter[2], nb_filter[1], nb_filter[1])
        self.conv2_2 = VGGBlock(nb_filter[2]*2+nb_filter[3], nb_filter[2], nb_filter[2])
        self.conv0_3 = VGGBlock(nb_filter[0]*3+nb_filter[1], nb_filter[0], nb_filter[0])
        self.conv1_3 = VGGBlock(nb_filter[1]*3+nb_filter[2], nb_filter[1], nb_filter[1])
        self.conv0_4 = VGGBlock(nb_filter[0]*4+nb_filter[1], nb_filter[0], nb_filter[0])
        if self.deep_supervision:
            self.final1 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
            self.final2 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
            self.final3 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
            self.final4 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
        else:
            self.final = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
    def forward(self, input):
        x0_0 = self.conv0_0(input)
        x1_0 = self.conv1_0(self.pool(x0_0))
        x0_1 = self.conv0_1(self.up(x1_0, x0_0))
        x2_0 = self.conv2_0(self.pool(x1_0))
        x1_1 = self.conv1_1(self.up(x2_0, x1_0))
        x0_2 = self.conv0_2(self.up(x1_1, torch.cat([x0_0, x0_1], 1)))
        x3_0 = self.conv3_0(self.pool(x2_0))
        x2_1 = self.conv2_1(self.up(x3_0, x2_0))   
        x1_2 = self.conv1_2(self.up(x2_1, torch.cat([x1_0, x1_1], 1)))
        x0_3 = self.conv0_3(self.up(x1_2, torch.cat([x0_0, x0_1, x0_2], 1)))
        x4_0 = self.conv4_0(self.pool(x3_0))
        x3_1 = self.conv3_1(self.up(x4_0, x3_0))
        x2_2 = self.conv2_2(self.up(x3_1, torch.cat([x2_0, x2_1], 1)))
        x1_3 = self.conv1_3(self.up(x2_2, torch.cat([x1_0, x1_1, x1_2], 1)))
        x0_4 = self.conv0_4(self.up(x1_3, torch.cat([x0_0, x0_1, x0_2, x0_3], 1)))
        if self.deep_supervision:
            output1 = self.final1(x0_1)
            output2 = self.final2(x0_2)
            output3 = self.final3(x0_3)
            output4 = self.final4(x0_4)
            return [output1, output2, output3, output4]
        else:
            output = self.final(x0_4)
            return output


目录
相关文章
|
PyTorch 算法框架/工具 网络架构
UNet详细解读(二)pytorch从头开始搭建UNet
UNet详细解读(二)pytorch从头开始搭建UNet
468 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
91 1
|
5月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
745 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
17天前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
1月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
78 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
2月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
169 9
|
7月前
|
机器学习/深度学习 JavaScript PyTorch
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
517 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
|
4月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
178 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
3月前
|
机器学习/深度学习 数据可视化 PyTorch
Flow Matching生成模型:从理论基础到Pytorch代码实现
本文将系统阐述Flow Matching的完整实现过程,包括数学理论推导、模型架构设计、训练流程构建以及速度场学习等关键组件。通过本文的学习,读者将掌握Flow Matching的核心原理,获得一个完整的PyTorch实现,并对生成模型在噪声调度和分数函数之外的发展方向有更深入的理解。
1321 0
Flow Matching生成模型:从理论基础到Pytorch代码实现
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
119 4
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现

推荐镜像

更多