YOLOV5模型转onnx并推理

简介: YOLOV5模型转onnx并推理

模型转onnx


普通模型转onnx


  1. 1.加载模型,需要是torch.save保存的模型

  2. 2.指定输入输出的名字

  3. 3.指定输入size

  4. 4.导出静态模型

  5. 5.导出动态维度模型
import torch
import torch.nn
#-------------------------------------------------------
#   加载模型,需要是torch.save保存的模型
#-------------------------------------------------------
model = torch.load('yolov5s.pt',map_location=torch.device('cpu'))
model.eval()
#-------------------------------------------------------
#   指定输入输出的名字
#-------------------------------------------------------
input_names = ['input']
output_names = ['output']
#-------------------------------------------------------
#   指定输入size
#-------------------------------------------------------
x = torch.randn(1,3,640,640,requires_grad=True)
#-------------------------------------------------------
#   导出静态模型
#-------------------------------------------------------
torch.onnx.export(model,
          x,
          "model.onnx",
          export_params=True,
          opset_version=10,
          do_constant_folding=True,
          input_names=input_names,
          output_names=output_names )
#-------------------------------------------------------
#   导出动态维度模型
#-------------------------------------------------------
torch.onnx.export(model,
          x,
          "model2.onnx",
          export_params=True,
          opset_version=10,
          do_constant_folding=True, 
          input_names=input_names,
          output_names=input_names,
          dynamic_axes= {
                        input_names: {0: 'batch_size', 2 : 'in_width', 3: 'int_height'},
                        output_names: {0: 'batch_size', 2: 'out_width', 3:'out_height'}})

yolov5模型转onnx


由于yolov5的模型和整个项目相互关联,所以转onnx无法用常规方法,只能用内部的转onnx方法


1.静态模型

python export.py --weights yolov5s.pt --include onnx

2.动态模型

python export.py --weights yolov5s.pt --include onnx --dynamic

1.png

onnx 推理


普通模型

x = torch.randn(1,3,640,640,requires_grad=True)
onnx_model = onnxruntime.InferenceSession("model.onnx")
print(onnx_model.get_inputs()[0].name)
inputs = {onnx_model.get_inputs()[0].name: x.cpu().numpy()}
outs = onnx_model.run(None, inputs)
print(outs[0])

yolov5模型


一、推理

1.cv2读取图像并resize
2.图像转BGR2RGB和HWC2CHW
3.图像归一化
4.图像增加维度
5.onnx_session 推理
class YOLOV5():
    def __init__(self,onnxpath):
        self.onnx_session=onnxruntime.InferenceSession(onnxpath)
        self.input_name=self.get_input_name()
        self.output_name=self.get_output_name()
    #-------------------------------------------------------
  #   获取输入输出的名字
  #-------------------------------------------------------
    def get_input_name(self):
        input_name=[]
        for node in self.onnx_session.get_inputs():
            input_name.append(node.name)
        return input_name
    def get_output_name(self):
        output_name=[]
        for node in self.onnx_session.get_outputs():
            output_name.append(node.name)
        return output_name
    #-------------------------------------------------------
  #   输入图像
  #-------------------------------------------------------
    def get_input_feed(self,img_tensor):
        input_feed={}
        for name in self.input_name:
            input_feed[name]=img_tensor
        return input_feed
    #-------------------------------------------------------
  #   1.cv2读取图像并resize
  # 2.图像转BGR2RGB和HWC2CHW
  # 3.图像归一化
  # 4.图像增加维度
  # 5.onnx_session 推理
  #-------------------------------------------------------
    def inference(self,img_path):
        img=cv2.imread(img_path)
        or_img=cv2.resize(img,(640,640))
        img=or_img[:,:,::-1].transpose(2,0,1)  #BGR2RGB和HWC2CHW
        img=img.astype(dtype=np.float32)
        img/=255.0
        img=np.expand_dims(img,axis=0)
        input_feed=self.get_input_feed(img)
        pred=self.onnx_session.run(None,input_feed)[0]
        return pred,or_img

二、坐标转换


将中心点坐标转换为左上角右下角坐标

def xywh2xyxy(x):
    # [x, y, w, h] to [x1, y1, x2, y2]
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2
    y[:, 1] = x[:, 1] - x[:, 3] / 2
    y[:, 2] = x[:, 0] + x[:, 2] / 2
    y[:, 3] = x[:, 1] + x[:, 3] / 2
    return y

三、非极大值抑制


1.计算框的面积


2.计算相交面积(相交、不相交)


3.计算该框与其它框的IOU,去除掉重复的框,即IOU值大的框


4.IOU小于thresh的框保留下来

#dets:  array [x,6] 6个值分别为x1,y1,x2,y2,score,class 
#thresh: 阈值
def nms(dets, thresh):
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    #-------------------------------------------------------
  #   计算框的面积
    # 置信度从大到小排序
  #-------------------------------------------------------
    areas = (y2 - y1 + 1) * (x2 - x1 + 1)
    scores = dets[:, 4]
    keep = []
    index = scores.argsort()[::-1] 
    while index.size > 0:
        i = index[0]
        keep.append(i)
    #-------------------------------------------------------
        #   计算相交面积
        # 1.相交
        # 2.不相交
        #-------------------------------------------------------
        x11 = np.maximum(x1[i], x1[index[1:]]) 
        y11 = np.maximum(y1[i], y1[index[1:]])
        x22 = np.minimum(x2[i], x2[index[1:]])
        y22 = np.minimum(y2[i], y2[index[1:]])
        w = np.maximum(0, x22 - x11 + 1)                              
        h = np.maximum(0, y22 - y11 + 1) 
        overlaps = w * h
        #-------------------------------------------------------
        #   计算该框与其它框的IOU,去除掉重复的框,即IOU值大的框
        # IOU小于thresh的框保留下来
        #-------------------------------------------------------
        ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
        idx = np.where(ious <= thresh)[0]
        index = index[idx + 1]
    return keep

四、根据置信度过滤无用框


1.删除置信度小于conf_thres的BOX


2.通过argmax获取置信度最大的类别


3.分别对每个类别进行过滤

def filter_box(org_box,conf_thres,iou_thres): #过滤掉无用的框
    #-------------------------------------------------------
  #   删除为1的维度
    # 删除置信度小于conf_thres的BOX
  #-------------------------------------------------------
    org_box=np.squeeze(org_box)
    conf = org_box[..., 4] > conf_thres
    box = org_box[conf == True]
    #-------------------------------------------------------
    # 通过argmax获取置信度最大的类别
  #-------------------------------------------------------
    cls_cinf = box[..., 5:]
    cls = []
    for i in range(len(cls_cinf)):
        cls.append(int(np.argmax(cls_cinf[i])))
    all_cls = list(set(cls))     
    #-------------------------------------------------------
  #   分别对每个类别进行过滤
  # 1.将第6列元素替换为类别下标
  # 2.xywh2xyxy 坐标转换
  # 3.经过非极大抑制后输出的BOX下标
  # 4.利用下标取出非极大抑制后的BOX
  #-------------------------------------------------------
  output = []
    for i in range(len(all_cls)):
        curr_cls = all_cls[i]
        curr_cls_box = []
        curr_out_box = []
        for j in range(len(cls)):
            if cls[j] == curr_cls:
                box[j][5] = curr_cls
                curr_cls_box.append(box[j][:6])
        curr_cls_box = np.array(curr_cls_box)
        # curr_cls_box_old = np.copy(curr_cls_box)
        curr_cls_box = xywh2xyxy(curr_cls_box)
        curr_out_box = nms(curr_cls_box,iou_thres)
        for k in curr_out_box:
            output.append(curr_cls_box[k])
    output = np.array(output)
    return output

五、画图

def draw(image,box_data):  
    #-------------------------------------------------------
    # 取整,方便画框
  #-------------------------------------------------------
    boxes=box_data[...,:4].astype(np.int32) 
    scores=box_data[...,4]
    classes=box_data[...,5].astype(np.int32) 
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        print('class: {}, score: {}'.format(CLASSES[cl], score))
        print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
        cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
                    (top, left ),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.6, (0, 0, 255), 2)

六、总代码

import os
import cv2
import numpy as np
import onnxruntime
import time
CLASSES=['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
        'hair drier', 'toothbrush'] #coco80类别
class YOLOV5():
    def __init__(self,onnxpath):
        self.onnx_session=onnxruntime.InferenceSession(onnxpath)
        self.input_name=self.get_input_name()
        self.output_name=self.get_output_name()
    #-------------------------------------------------------
  #   获取输入输出的名字
  #-------------------------------------------------------
    def get_input_name(self):
        input_name=[]
        for node in self.onnx_session.get_inputs():
            input_name.append(node.name)
        return input_name
    def get_output_name(self):
        output_name=[]
        for node in self.onnx_session.get_outputs():
            output_name.append(node.name)
        return output_name
    #-------------------------------------------------------
  #   输入图像
  #-------------------------------------------------------
    def get_input_feed(self,img_tensor):
        input_feed={}
        for name in self.input_name:
            input_feed[name]=img_tensor
        return input_feed
    #-------------------------------------------------------
  #   1.cv2读取图像并resize
  # 2.图像转BGR2RGB和HWC2CHW
  # 3.图像归一化
  # 4.图像增加维度
  # 5.onnx_session 推理
  #-------------------------------------------------------
    def inference(self,img_path):
        img=cv2.imread(img_path)
        or_img=cv2.resize(img,(640,640))
        img=or_img[:,:,::-1].transpose(2,0,1)  #BGR2RGB和HWC2CHW
        img=img.astype(dtype=np.float32)
        img/=255.0
        img=np.expand_dims(img,axis=0)
        input_feed=self.get_input_feed(img)
        pred=self.onnx_session.run(None,input_feed)[0]
        return pred,or_img
#dets:  array [x,6] 6个值分别为x1,y1,x2,y2,score,class 
#thresh: 阈值
def nms(dets, thresh):
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    #-------------------------------------------------------
  #   计算框的面积
    # 置信度从大到小排序
  #-------------------------------------------------------
    areas = (y2 - y1 + 1) * (x2 - x1 + 1)
    scores = dets[:, 4]
    keep = []
    index = scores.argsort()[::-1] 
    while index.size > 0:
        i = index[0]
        keep.append(i)
    #-------------------------------------------------------
        #   计算相交面积
        # 1.相交
        # 2.不相交
        #-------------------------------------------------------
        x11 = np.maximum(x1[i], x1[index[1:]]) 
        y11 = np.maximum(y1[i], y1[index[1:]])
        x22 = np.minimum(x2[i], x2[index[1:]])
        y22 = np.minimum(y2[i], y2[index[1:]])
        w = np.maximum(0, x22 - x11 + 1)                              
        h = np.maximum(0, y22 - y11 + 1) 
        overlaps = w * h
        #-------------------------------------------------------
        #   计算该框与其它框的IOU,去除掉重复的框,即IOU值大的框
        # IOU小于thresh的框保留下来
        #-------------------------------------------------------
        ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
        idx = np.where(ious <= thresh)[0]
        index = index[idx + 1]
    return keep
def xywh2xyxy(x):
    # [x, y, w, h] to [x1, y1, x2, y2]
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2
    y[:, 1] = x[:, 1] - x[:, 3] / 2
    y[:, 2] = x[:, 0] + x[:, 2] / 2
    y[:, 3] = x[:, 1] + x[:, 3] / 2
    return y
def filter_box(org_box,conf_thres,iou_thres): #过滤掉无用的框
    #-------------------------------------------------------
  #   删除为1的维度
    # 删除置信度小于conf_thres的BOX
  #-------------------------------------------------------
    org_box=np.squeeze(org_box)
    conf = org_box[..., 4] > conf_thres
    box = org_box[conf == True]
    #-------------------------------------------------------
    # 通过argmax获取置信度最大的类别
  #-------------------------------------------------------
    cls_cinf = box[..., 5:]
    cls = []
    for i in range(len(cls_cinf)):
        cls.append(int(np.argmax(cls_cinf[i])))
    all_cls = list(set(cls))     
    #-------------------------------------------------------
  #   分别对每个类别进行过滤
  # 1.将第6列元素替换为类别下标
  # 2.xywh2xyxy 坐标转换
  # 3.经过非极大抑制后输出的BOX下标
  # 4.利用下标取出非极大抑制后的BOX
  #-------------------------------------------------------
  output = []
    for i in range(len(all_cls)):
        curr_cls = all_cls[i]
        curr_cls_box = []
        curr_out_box = []
        for j in range(len(cls)):
            if cls[j] == curr_cls:
                box[j][5] = curr_cls
                curr_cls_box.append(box[j][:6])
        curr_cls_box = np.array(curr_cls_box)
        # curr_cls_box_old = np.copy(curr_cls_box)
        curr_cls_box = xywh2xyxy(curr_cls_box)
        curr_out_box = nms(curr_cls_box,iou_thres)
        for k in curr_out_box:
            output.append(curr_cls_box[k])
    output = np.array(output)
    return output
def draw(image,box_data):  
    #-------------------------------------------------------
    # 取整,方便画框
  #-------------------------------------------------------
    boxes=box_data[...,:4].astype(np.int32) 
    scores=box_data[...,4]
    classes=box_data[...,5].astype(np.int32) 
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        print('class: {}, score: {}'.format(CLASSES[cl], score))
        print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
        cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
                    (top, left ),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.6, (0, 0, 255), 2)
if __name__=="__main__":
    onnx_path='yolov5s.onnx'
    model=YOLOV5(onnx_path)
    output,or_img=model.inference('bicycle_1_1.jpg')
    outbox=filter_box(output,0.5,0.5)
    draw(or_img,outbox)
    cv2.imwrite('res.jpg',or_img)

运行结果如下图所示

4.jpeg

目录
相关文章
|
5月前
|
监控 计算机视觉 知识图谱
YOLOv10的改进、部署和微调训练总结
YOLOv10在实时目标检测中提升性能与效率,通过无NMS训练解决延迟问题,采用一致的双任务和效率-精度驱动的模型设计。YOLOv10-S比RT-DETR-R18快1.8倍,YOLOv10-B比YOLOv9-C延迟减少46%。新方法包括一致性双标签分配,优化计算冗余和增强模型能力。实验结果显示YOLOv10在AP和延迟上均有显著改善。文章还提供了部署和微调YOLOv10的示例代码。
676 2
|
6月前
|
数据采集 机器学习/深度学习 存储
使用LORA微调RoBERTa
模型微调是指在一个已经训练好的模型的基础上,针对特定任务或者特定数据集进行再次训练以提高性能的过程。微调可以在使其适应特定任务时产生显着的结果。
241 0
|
算法 Go 计算机视觉
【YOLO系列】YOLOv8算法(尖端SOTA模型)
Ultralytics YOLOv8 是由 Ultralytics开发的一个前沿 SOTA 模型。它在以前 YOLO 版本的成功基础上,引入了新的功能和改进,进一步提升了性能和灵活性。YOLOv8 基于快速、准确和易于使用的理念设计,使其成为广泛的物体检测、图像分割和图像分类任务的绝佳选择。
2929 0
【YOLO系列】YOLOv8算法(尖端SOTA模型)
|
5月前
|
计算机视觉
【YOLOv10训练教程】如何使用YOLOv10训练自己的数据集并且推理使用
【YOLOv10训练教程】如何使用YOLOv10训练自己的数据集并且推理使用
|
5月前
|
固态存储
【YOLO系列】YOLOv10模型结构详解与推理部署实现
【YOLO系列】YOLOv10模型结构详解与推理部署实现
933 0
|
6月前
|
机器学习/深度学习 并行计算 PyTorch
使用 PyTorch、ONNX 和 TensorRT 将视觉 Transformer 预测速度提升 9 倍
使用 PyTorch、ONNX 和 TensorRT 将视觉 Transformer 预测速度提升 9 倍
472 1
|
PyTorch 开发工具 算法框架/工具
yolo系列的ONNX部署(C++)【适用于v4\v5\v5-6.1\v7】
yolo系列的ONNX部署(C++)【适用于v4\v5\v5-6.1\v7】
1391 0
yolo系列的ONNX部署(C++)【适用于v4\v5\v5-6.1\v7】
|
机器学习/深度学习 人工智能 PyTorch
【图像分类】基于OpenVINO实现PyTorch ResNet50图像分类
【图像分类】基于OpenVINO实现PyTorch ResNet50图像分类
311 0
|
机器学习/深度学习 算法 PyTorch
pytorch模型转ONNX、并进行比较推理
pytorch模型转ONNX、并进行比较推理
722 0
|
网络安全 开发工具 网络架构
YOLOV7详细解读(四)训练自己的数据集
YOLOV7详细解读(四)训练自己的数据集
764 0
下一篇
无影云桌面