【大数据】可视化仪表板 - Superset的安装和使用

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 【大数据】可视化仪表板 - Superset的安装和使用

一、Superset简介

Apache Superset是一个现代化的、企业级的数据探索和可视化平台,旨在帮助数据工程师和科学家在Web界面上创建和共享各种类型的数据洞察。

1. 软件作用

Apache Superset 的底层是一个 Flask 应用程序,其核心功能包括数据可视化、仪表板制作、数据切片和切块、以及 SQL Lab。在 Superset 的应用结构中,Flask 应用程序处理路由、视图函数和模板渲染,而 SQLAlchemy 提供了对多种数据库的抽象访问。

Apache Superset 支持多种数据源,可以连接到任何 SQL-speaking 数据库或数据引擎(如 MySQL、Postgres、BigQuery、Redshift 等),同时也支持各种 大数据组件 如 Hive、Presto、Druid 等,只需要安装部分组件即可。

2. 软件特点

  • 具有丰富的数据可视化组件库,提供了多种图表类型,可以满足各种数据展示需求
  • 使用SQL Lab可以直接执行SQL查询,方便快捷
  • 采用响应式设计,对移动设备友好
  • 具有强大的数据权限管理功能,可以精细控制每个用户的数据访问权限

二、Superset安装

1. 前置环境

软件需要运行在Python 3.6及以上版本,推荐使用虚拟环境,官方给出的安装步骤:https://superset.apache.org/docs/installation/installing-superset-from-scratch/

  • virtualenv安装:pip install virtualenv
  • 创建虚拟环境:python3 -m venv superset
  • 激活虚拟环境:. superset/bin/activate
  • 前置环境安装

开始安装前,需要确保系统环境以及python虚拟环境已经安装了以下内容:

sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install python3-dev
pip install wheel

2. 安装配置

  • 安装superset:pip install apache-superset

  • 前置设定
# 推荐添加到环境变量配置文件中
export FLASK_APP=superset
superset fab create-admin

此时会遇到一个警告,我可以可以按照如下步骤来解决:

touch superset_config.py

# 推荐添加到环境变量配置文件中
export SUPERSET_CONFIG_PATH=/home/hadoop/superset/superset_config.py
superset fab create-admin

配置SUPERSET_CONFIG_PATH的路径,指向刚刚创建的config文件,完成后再次进行启动。

  • 报错解决

笔者在执行命令的过程中出现如下报错:

这是由于 sqlparse 不兼容导致的,默认安装了0.4.4,可以通过以下命令确认版本:

pip show sqlparse

此时需要降级到0.4.3,这是由于我目前安装的superset限制版本区间最低为0.4.3,如果大家选择了其它的版本请根据实际情况处理:

pip uninstall sqlparse
pip install sqlparse==0.4.3

3. 启动访问

前面的初始化步骤完成后可以导入一些样例数据,然后进行启动,在执行所有操作前需要先进行初始化。

  • 导入样例数据
# 初始化命令
superset db upgrade
# 加载数据,耗时较长
superset load_examples
  • superset构建

首先需要下载前端项目的源代码,然后确保系统已经安装了Node环境。小编当前使用的版本要求node 16.9.1以上,npm 7.5.4 || 8.1.2 以上,这里以安装node 16.x为例。

git clone https://github.com/apache/superset.git

强烈提醒:请保证NodeJS的大版本一致,否则需要自己想办法解决各种构建问题。如果遇到RpcIpcMessagePortClosedError错误,一般为内存不足导致,请尝试增加内存。

# 安装构建所需环境
sudo apt  install curl
curl -fsSL https://deb.nodesource.com/setup_16.x | sudo -E bash -
sudo apt-get install -y nodejs
sudo npm install -g npm@latest
sudo npm install -g node-gyp
# ARM架构需要手动安装chromium-browser
sudo apt install chromium-browser
# 构建前端项目
npm ci
# 预先解决一些构建中遇到的问题
npx update-browserslist-db@latest
# 该步骤耗时较长 - 需要保证可用内存在4GB以上
npm run build
  • superset启动
# 切换到superset-frontend的上一级目录
cd ..
superset run -p 8088 --with-threads --reload --debugger

  • superset访问

启动后,在浏览器访问8088端口即可,使用此前初始化是设定的密码进行登录:

可以查看到,已经显示了此前导入过的样例:

三、数据源配置

在操作界面右上角,支持多种数据源添加方式,本文将介绍数据库连接方式。

1. PostgreSQL

  • 依赖安装

在连接PostgreSQL时,需要在项目启动之前,先安装相关依赖。激活superset虚拟环境后执行如下命令:

pip install psycopg2-binary
  • 连接配置

在配置界面,默认支持PostgreSQL和SQLite两种直接导入方式:

选择PostgreSQL进入配置界面:

连接成功后,可以开始创建DATASET,或者也可以使用:

点击FINISH后,再次点击右上角的➕,此时Data选单下出现Create dataset

2. MySQL

当已经添加了一个数据库连接后,想要再次添加另外的数据源,可以按照如下步骤操作:

然后在操作界面中可以再次看到添加DATABASE的按钮,如图:

  • 依赖安装

在连接MySQL时,需要在项目启动之前,先安装相关依赖。激活superset虚拟环境后执行如下命令:

sudo apt-get install libmysqlclient-dev
pip install mysqlclient
  • 连接配置

在配置界面,选择Other,通过连接字符串来直接配置:

连接字符串为SQLAlchemy URI格式 -> mysql://username:password@hostname:port/database

3. Hive

  • 依赖安装

在连接Hive时,需要在项目启动之前,先安装相关依赖。激活superset虚拟环境后执行如下命令:

pip install PyMySQL
pip install pyhive
pip install thrift
sudo apt-get install python-dev libsasl2-dev
pip install sasl
pip install thrift_sasl

连接前确保Hive相关服务已经启动,具体步骤可以参考:Hive 3.x的安装部署 - Ubuntu

  • 连接配置

在配置界面,选择Other,通过连接字符串来直接配置:

连接字符串为SQLAlchemy URI格式 -> hive://username:password@hostname:port/database

在连接测试通过后,点击CONNECT按钮可能会出现一个无法连接的异常,但是小编实际测试后发现并没有任何影响。此时连接已经成功创建,我们只要将弹窗关闭,然后刷新页面即可,后续的使用也一切正常。

4. 其它说明

当我们不断的向superset的虚拟环境添加各种连接所需的依赖,并且创建相应类型的连接后,操作界面就会变得越来越丰富:

当我们需要的数据源类型基本稳定后,就可以将superset进程挂在后台运行了,这样我们可以专注于可视化的工作:

# 进入到对应目录后执行
nohup superset run -p 8088 --with-threads --reload --debugger &

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
1月前
|
存储 供应链 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业供应链风险预警与决策支持中的应用(204)
本篇文章探讨了基于 Java 的大数据可视化技术在企业供应链风险预警与决策支持中的深度应用。文章系统介绍了从数据采集、存储、处理到可视化呈现的完整技术方案,结合供应链风险预警与决策支持的实际案例,展示了 Java 大数据技术如何助力企业实现高效、智能的供应链管理。
|
2月前
|
存储 数据采集 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵溯源与治理策略展示中的应用(191)
本项目探索了基于Java的大数据可视化技术在城市交通拥堵溯源与治理策略中的应用。通过整合多源交通数据,利用Java生态中的大数据处理与可视化工具,构建了交通拥堵分析模型,并实现了拥堵成因的直观展示与治理效果的可视化评估。该方案为城市交通管理提供了科学、高效的决策支持,助力智慧城市建设。
|
3月前
|
存储 数据采集 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在城市地下管网管理与风险预警中的应用(275)
本文系统阐述 Java 与大数据可视化技术在城市地下管网管理中的应用,涵盖数据采集、三维建模、风险预警及性能优化,结合真实案例提供可落地的技术方案。
|
数据可视化 Java 大数据
Java 大视界 -- 基于 Java 的大数据可视化在城市规划决策支持中的交互设计与应用案例(164)
本文围绕基于 Java 的大数据可视化在城市规划决策支持中的应用展开,分析决策支持现状与挑战,阐述技术应用方法,结合实际案例和代码,提供实操性强的技术方案。
|
5月前
|
数据采集 数据可视化 数据挖掘
基于Python的App流量大数据分析与可视化方案
基于Python的App流量大数据分析与可视化方案
|
11月前
|
消息中间件 监控 数据可视化
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
394 2
|
11月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
237 5
|
11月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
124 4
|
数据可视化 大数据
【Echarts大屏】大数据平台可视化大屏
【Echarts大屏】大数据平台可视化大屏
【Echarts大屏】大数据平台可视化大屏
|
SQL 分布式计算 数据可视化
基于Hadoop的大数据可视化方法
【8月更文第28天】在大数据时代,有效地处理和分析海量数据对于企业来说至关重要。Hadoop作为一个强大的分布式数据处理框架,能够处理PB级别的数据量。然而,仅仅完成数据处理还不够,还需要将这些数据转化为易于理解的信息,这就是数据可视化的重要性所在。本文将详细介绍如何使用Hadoop处理后的数据进行有效的可视化分析,并会涉及一些流行的可视化工具如Tableau、Qlik等。
372 0