【MATLAB第50期】基于MATLAB的RELM-LOO多输入单输出回归&分类预测算法与RELM及ELM进行对比

简介: 【MATLAB第50期】基于MATLAB的RELM-LOO多输入单输出回归&分类预测算法与RELM及ELM进行对比

【MATLAB第50期】基于MATLAB的RELM-LOO多输入单输出回归&分类预测算法与RELM及ELM进行对比


引言


RELM-LOO即通过LOO计算效率方法对其RELM模型正则化C系数进行寻优。

对于进化算法寻优来说, 结果更稳定。


可参考以下文献:

[1] Shao Z , Er M J , Wang N .An effective semi-cross-validation model selection method for extreme learning machine with ridge regression[J].Neurocomputing, 2015, 151:933-942.DOI:10.1016/j.neucom.2014.10.002.


[2] Shao Z , Er M J .Efficient Leave-One-Out Cross-Validation-based Regularized Extreme Learning Machine[J].Neurocomputing, 2016, 194(jun.19):260-270.DOI:10.1016/j.neucom.2016.02.058.


一、回归模型


1.数据情况


7输入1输出,103行样本数据 。

前80训练,后23测试 ,随机样本抽取。

%%  导入数据
res = xlsread('数据集.xlsx');
%%  划分训练集和测试集
temp = randperm(103);
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);
P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

2.参数设置

nn.hiddensize     = 100;% 隐含层神经元数
nn.inputsize      = size(p_train,1); %输入变量数量 
nn.activefunction = 's';   %sigmoid激活函数 
method            = {'ELM','RELM','RELM-LOO'};% 方法进行对比
nn                = elm_initialization(nn);% 初始elm偏差及权值 
nn.C1              = 0.001; %RELM初始化正则化参数
nn.C2             = exp(-8:0.2:6); %RELM-LOO搜寻正则化参数范围 

3.效果展示

ELM训练集数据的RMSE为:2.0216
ELM测试集数据的RMSE为:3.199
ELM训练集数据的R2为:0.9337
ELM测试集数据的R2为:0.79778
ELM训练集数据的MAE为:1.5877
ELM测试集数据的MAE为:1.9848
ELM训练集数据的MBE为:0.00034057
ELM测试集数据的MBE为:0.41401
RELM训练集数据的RMSE为:1.643
RELM测试集数据的RMSE为:2.5332
RELM训练集数据的R2为:0.99366
RELM测试集数据的R2为:0.95801
RELM训练集数据的MAE为:0.49995
RELM测试集数据的MAE为:0.88175
RELM训练集数据的MBE为:0.12195
RELM测试集数据的MBE为:0.10933
RELM-LOO训练集数据的RMSE为:0.62506
RELM-LOO测试集数据的RMSE为:1.4577
RELM-LOO训练集数据的R2为:0.99366
RELM-LOO测试集数据的R2为:0.95801
RELM-LOO训练集数据的MAE为:0.49995
RELM-LOO测试集数据的MAE为:0.88175
RELM-LOO训练集数据的MBE为:0.12195
RELM-LOO测试集数据的MBE为:0.10933


二、分类模型


1.数据情况


12输入1输出,357行样本数据 ,4分类标签。

前240训练,后157测试 ,随机样本抽取。

%%  导入数据
res = xlsread('数据集C.xlsx');
%%  划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);


2.参数设置


nn.hiddensize = 100;% 隐含层神经元数

nn.inputsize = size(p_train,1); %输入变量数量

nn.activefunction = ‘s’; %sigmoid激活函数

method = {‘ELM’,‘RELM’,‘RELM-LOO’};% 方法进行对比

nn = elm_initialization(nn);% 初始elm偏差及权值

nn.C = 0.1; %正则化参数

nn.C2 = exp(-4:0.2:4); %RELM-LOO搜寻正则化参数范围

nn.type = ‘classification’;;%分类


3.效果展示



ELM训练集数据的正确率acc为:96.25
ELM测试集数据的正确率acc为:94.0171
RELM训练集数据的正确率acc为:96.25
RELM测试集数据的正确率acc为:96.5812
RELM-LOO训练集数据的正确率acc为:97.0833
RELM-LOO测试集数据的正确率acc为:97.4359


三、代码获取


后台私信回复“50期”可获取下载链接。

相关文章
|
1天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
4天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
3天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
3天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
13天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
6天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
5天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
10天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。