【MATLAB第45期】基于MATLAB的深度学习SqueezeNet卷积神经网络混凝土裂纹图像识别预测模型

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: 【MATLAB第45期】基于MATLAB的深度学习SqueezeNet卷积神经网络混凝土裂纹图像识别预测模型

【MATLAB第45期】基于MATLAB的深度学习SqueezeNet卷积神经网络混凝土裂纹图像识别预测模型


引言


该文章展示如何微调名为SqueezeNet的预训练深度卷积网络,以执行裂纹图像分类预测。并使用一种称为Grad-CAM的技术来解释和分析分类输出。文章使用L.Zhang介绍的混凝土裂缝图像数据集。


SqueezeNet卷积神经网络是Matlab官方支持的网络中最小的预训练网络。


SqueezeNet已经对超过一百万张图像进行了训练,可以将图像分类为1000个对象类别(如键盘、咖啡杯、铅笔和许多动物)。该网络已经为广泛的图像学习了丰富的特征表示。该网络将图像作为输入,并输出图像中对象的标签以及每个对象类别的概率。


常见的还有迁移学习,通常用于深度学习应用。可以把一个预先训练好的网络作为学习新任务的起点。使用迁移学习对网络进行微调通常比从头开始训练具有随机初始化权重的网络更快、更容易。可以使用少量的训练图像将学习到的功能快速转移到新任务中。


本文以SqueezeNet卷积神经网络为例。


数据下载链接:https://data.mendeley.com/datasets/5y9wdsg2zt/1


一、加载数据


首先,请从上述链接下载图像。然后将其解压缩,命名为Concrete Crack Images for Classification。请在确认文件在您的当前目录中后运行此代码,如下所示。

clear;clc;close all
imds = imageDatastore('Concrete Crack Images for Classification','IncludeSubfolders',true, 'LabelSource','foldernames');
numExample=16;
idx = randperm(numel(imds.Files),numExample);
for i=1:numExample
    I=readimage(imds,idx(i));
    I_tile{i}=insertText(I,[1,1],string(imds.Labels(idx(i))),'FontSize',20);
end
I_tile = imtile(I_tile);
figure;imshow(I_tile);title('examples of the dataset')

使用imageDatastore功能存储带有标签信息的图像。标签信息是根据文件“Concrete Crack Images for Classification”中的文件夹名称识别的。

该数据集包含正常(负)和裂纹图像(正)。数据是从各个 METU 校园建筑收集的。

将数据集分为两部分,即负裂纹图像和正裂纹图像,以进行图像分类。每个类有 20000 张图像,总共 40000 张 227 x 227 像素、RGB 通道的图像。该数据集是根据Zhang等人(2016)提出的方法从458张高分辨率图像(4032x3024像素)生成的。

高分辨率图像在表面光洁度和照明条件方面存在差异。不应用随机旋转或翻转方面的数据增强。


二、分割图像


将数据划分为训练、验证和测试数据集。函数splitEachLabel将图像数据存储拆分为两个新的数据存储。该数据集包含20k个正常图像和20k个裂纹图像。由于数据集有许多图像,因此需要一些时间进行训练。

为了方便演示,您可以将训练图像的比例设置为较低,例如0.01,以使图像数量非常少。imds之后的比率表示确定训练、验证和测试数据的图像数量的比率。

例如,如果比率为0.01,则图像数量为40k*0.01=400。

[imdsTrain,imdsValidation,imdsTest] = splitEachLabel(imds,0.01,0.01,0.01,'randomized');

计算训练数据集中的图像数量。确认数字是否符合上述预期。

numTrainImages = numel(imdsTrain.Labels)


三、加载预训练网络


net = squeezenet;

使用analyzeNetwork可以显示网络体系结构的交互式可视化以及有关网络层的详细信息。

analyzeNetwork(net)

第一层,即图像输入层,需要大小为227×227×3的输入图像,其中3是颜色通道的数量。

inputSize = net.Layers(1).InputSize;

四、替换最终图层


由于SqueezeNet的原始版本是一个可容纳1000个类的网络,必须将其调整为正常/裂纹分类(2类)。从经过训练的网络中提取层图。


lgraph = layerGraph(net); 

在大多数网络中,具有可学习权重的最后一层是完全连接层。在一些网络中,例如SqueezeNet,最后一个可学习层是1乘1的卷积层。在这种情况下,在softmax层之前添加了一个完全连接的层。

numClasses = numel(categories(imdsTrain.Labels))


五、数据增强


网络需要大小为227×227×3的输入图像,但是图像数据存储中的图像具有不同的大小。使用增强图像数据存储自动调整训练图像的大小。指定要在训练图像上执行的其他增强操作:

(1)沿垂直轴随机翻转训练图像,并在水平和垂直方向上随机平移最多30个像素。

(2)数据增强有助于防止网络过拟合和记忆训练图像的确切细节

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

要在不执行进一步数据扩充的情况下自动调整验证和测试图像的大小,请使用扩充图像数据存储,而不指定任何额外的预处理操作。

六、训练网络

指定参数选项。使用adam优化器。

options = trainingOptions('adam', ...
    'MiniBatchSize',100, ...
    'MaxEpochs',5, ...
    'InitialLearnRate',2e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ExecutionEnvironment',"auto", ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');

网络在GPU上进行训练(如果可用)。它由ExecutionEnvironment指定,如上所述为“auto”。

对测试图像进行分类以计算分类精度,使用微调网络对正常图像和裂纹图像的测试图像进行分类。

[YPred,scores] = classify(netTransfer,augimdsTest);

显示四个样本验证图像及其预测标签。计算验证集上的分类精度。准确度是网络正确预测的标签的分数。

YTest = imdsTest.Labels;
accuracy = mean(YPred == YTest)
figure()
    plot(YPred)
    hold on
    plot(YTest)
    legend('预测值','实测值')
xlabel('测试样本')

正确率:accuracy = 0.9925

七、结果分析

grad-cam揭示深度学习决策背后的原因。从图层图创建一个dlnetwork。

dlnet = dlnetwork(lgraph);

指定Grad-cam的名称

softmaxName = 'softmax_layer';
featureLayerName = 'relu_conv10';

dispNum控制要使用grad-cam的图像数量,如设为12。使用自动区分,请将sherlock图像转换为dlarray。

dlImg = dlarray(single(img),'SSC');

通过调用gradcam函数上的dlfeval来计算图像的Grad-CAM梯度。将gradient map的大小调整为SqueezeNet图像的大小,并将分数缩放到适当的级别以进行显示。

gradcamMap = sum(featureMap .* sum(dScoresdMap, [1 2]), 3);
gradcamMap = extractdata(gradcamMap);
gradcamMap = rescale(gradcamMap);
imagesc(imresize(gradcamMap,inputSize(1:2) ,'Method', 'bicubic'),'AlphaData',0.5;

使用“AlphaData”值0.5在图像顶部显示gradCAM级别。颜色图的深蓝色值最低,深红色值最高。这种显示分类重要性的可视化也可以在训练过程中进行。可以确认,网络逐步学习了用于分类的良好特征。


参考文献:

[1] Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size.” arXiv preprint arXiv:1602.07360 (2016).

[2] Matlab Documentation: Train Deep Learning Network to Classify New Images

[3] Matlab Documentation: Grad-CAM Reveals the Why Behind Deep Learning Decisions

[4] Zhang, Lei, et al. “Road crack detection using deep convolutional neural network.” 2016 IEEE international conference on image processing (ICIP). IEEE, 2016.


八、代码获取


后台私信回复“45期”即可获取下载链接。

相关文章
|
14天前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
44 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
14天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第19天】在人工智能的浩瀚星海中,卷积神经网络(CNN)如同一颗璀璨的星辰,照亮了图像处理的天空。本文将深入CNN的核心,揭示其在图像识别领域的强大力量。通过浅显易懂的语言和直观的比喻,我们将一同探索CNN的奥秘,并见证它如何在现实世界中大放异彩。
|
12天前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
133 73
|
13天前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
65 21
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
13天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
60 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
1天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
1天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第31天】本文旨在通过浅显易懂的语言和直观的比喻,为初学者揭开深度学习中卷积神经网络(CNN)的神秘面纱。我们将从CNN的基本原理出发,逐步深入到其在图像识别领域的实际应用,并通过一个简单的代码示例,展示如何利用CNN进行图像分类。无论你是编程新手还是深度学习的初学者,这篇文章都将为你打开一扇通往人工智能世界的大门。
|
13天前
|
机器学习/深度学习 自动驾驶 TensorFlow
深入理解卷积神经网络(CNN)在图像识别中的应用
【9月更文挑战第20天】本文旨在通过直观的解释和代码示例,向初学者介绍卷积神经网络(CNN)的基本概念及其在图像识别领域的应用。文章将首先解释什么是CNN以及它如何工作,然后通过一个简单的Python代码示例展示如何构建一个基本的CNN模型。最后,我们将讨论CNN在现实世界问题中的潜在应用,并探讨其面临的挑战和发展方向。
32 2
|
17天前
|
机器学习/深度学习 算法 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第16天】本文将深入浅出地介绍卷积神经网络(CNN)的基本概念、结构和工作原理,同时通过一个实际的代码示例来展示如何在Python中使用Keras库构建一个简单的CNN模型进行图像识别。我们将看到,即使是初学者也能够通过简单的步骤实现深度学习的强大功能,进而探索其在复杂数据集上的应用潜力。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
下一篇
无影云桌面