【MATLAB第43期】基于MATLAB的BO-NAR贝叶斯优化动态神经网络NAR时间序列股票预测模型

简介: 【MATLAB第43期】基于MATLAB的BO-NAR贝叶斯优化动态神经网络NAR时间序列股票预测模型

【MATLAB第43期】基于MATLAB的BO-NAR贝叶斯优化动态神经网络NAR时间序列股票预测模型


一、效果展示



二、模型介绍


1.数据情况


一列数据,499个值

ratio = 0.9;% 训练集比例
MaxEpochs = 600;% 最大训练次数 
% % 导入股票数据
xall= importdata('数据.xlsx');

2.优化参数


**贝叶斯优化7个超参数

学习率
训练目标函数
动量值
归一方式
滑动窗口值
隐含层1神经元数
隐含层2神经元数**

适应度函数: mae


3.贝叶斯结构参数


贝叶斯参数:

'MaxTime',10*60*60, ...%10*60*60  训练最大时间
'Verbose',1,...
'NumSeedPoints',info(1),...%初始评估点数
'MaxObjectiveEvaluations',100,...%迭代次数
'ExplorationRatio',0.7,...%搜索倾向概率


4.NAR参数:


 net.trainParam.epochs = MaxEpochs ; % 600
        net.trainParam.goal = 1e-6;   %训练目标值
         net.trainParam.max_fail = 30; % 最大失败次数
               net.divideParam.trainRatio = 0.7;训练集划分
        net.divideParam.valRatio = 0.15;:验证集划分
        net.divideParam.testRatio = 0.15;%测试集划分


三、代码展示


clear all
ratio = 0.9;% 训练集比例
MaxEpochs = 600;% 最大训练次数 
NetOption = 'NarNet';% NET网络
% % 导入股票数据
xall= importdata('数据.xlsx');
Date=datetime(xall.textdata)';
data= xall.data';
numStepsTraining = round(ratio*numel(data));
indexTrain = 1:numStepsTraining;
dataTrain = data(indexTrain );
dateTrain = Date(indexTrain);
indexTest = numStepsTraining+1:size(data,2);
dataTest = data(indexTest);
dateTest = Date(indexTest);
    optimVars = [
        optimizableVariable('learningrate',[1e-5 1e-2],'Type','real','Transform',"log")
        optimizableVariable('performFcn',{'mse' 'mae' 'sse' 'msesparse'},'Type','categorical')
        optimizableVariable('mc',[5e-1 0.99],'Type','real',"Transform","log")
        optimizableVariable('processFcns',{'mapminmax' 'mapstd'},'Type','categorical')
        optimizableVariable('Lag',[5 20],'Type','integer')
        optimizableVariable('hiddenLayerSize1',[7 25],'Type','integer')
        optimizableVariable('hiddenLayerSize2',[7 25],'Type','integer')];
    BayesObject = bayesopt(ObjFcnSN,optimVars, ...
        'MaxTime',10*60*60, ...%10*60*60  训练最大时间
        'Verbose',1,...
        'NumSeedPoints',info(1),...%初始评估点数
        'MaxObjectiveEvaluations',100,...%迭代次数
        'ExplorationRatio',0.7,...%搜索倾向概率
    % 得到最佳参数
    optVars = bestPoint(BayesObject),


四、代码获取


后台**私信回复“43期”**即可获取下载链接

相关文章
|
3天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
6天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第40天】在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术以及安全意识等方面的知识,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和建议,以保护个人和组织的信息安全。
29 6
|
8天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和方法来保护自己的信息安全。
21 2
|
2天前
|
安全 算法 网络协议
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字时代,网络安全和信息安全已经成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全的重要性和应对措施。通过阅读本文,您将了解到网络安全的基本概念、常见的网络安全漏洞、加密技术的原理和应用以及如何提高个人和组织的网络安全意识。
|
3天前
|
存储 安全 算法
网络安全与信息安全:漏洞、加密与意识的三重防线
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、确保个人隐私和企业资产安全的基石。本文将深入探讨网络漏洞的成因、加密技术的应用以及安全意识的培养,旨在通过技术与教育的结合,构建起一道坚固的防御体系。我们将从实际案例出发,分析常见的网络安全威胁,揭示如何通过加密算法保护数据安全,并强调提升个人和组织的安全意识在防范网络攻击中的重要性。
|
3天前
|
监控 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术以及安全意识等方面的内容,帮助读者更好地了解如何保护自己的网络安全和信息安全。我们将通过实例和案例分析,揭示网络攻击者如何利用这些漏洞进行攻击,并提供一些实用的防御策略和建议。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的信息和见解。

热门文章

最新文章

下一篇
无影云桌面