【MATLAB第42期】基于MATLAB的贝叶斯优化决策树分类算法与网格搜索、随机搜索对比,含对机器学习模型的评估度量介绍

简介: 【MATLAB第42期】基于MATLAB的贝叶斯优化决策树分类算法与网格搜索、随机搜索对比,含对机器学习模型的评估度量介绍

【MATLAB第42期】基于MATLAB的贝叶斯优化决策树分类算法与网格搜索、随机搜索对比,含对机器学习模型的评估度量介绍


网格搜索、随机搜索和贝叶斯优化是寻找机器学习模型参数最佳组合、交叉验证每个参数并确定哪一个参数具有最佳性能的常用方法。


一、 评估指标

1、分类

1.1 准确性

1.2 精度

1.3 召回

1.4 F1值

1.5 F0.5值

1.6 F2值

1.7 计算评估指标的功能

2、回归

2.1 平均绝对误差

2.2 均方误差

2.3 均方根误差

二、 基于F1值执行网格搜索的多循环

三、 fitctree优化选项中的网格搜索(不能将目标函数更改为f1值)

四、 fitctree优化选项中的随机搜索(不能将目标函数更改为f1值)

五、 基于F1值的贝叶斯优化

六、代码获取


在讨论这些方法之前,我想先谈谈评估指标。这是因为从不同的超参数组合中选择最佳模型将是我们的性能指标。


一、 评估指标


这里将讨论不同的评估指标:准确度、精密度、召回率、F1值、F0.5值、F2值、平均绝对误差、均方误差、均方根误差。


1、分类


例如,假设我们的实际标签和预测代码如下:

Actual = {'hi','hi','No hi','hi','No hi','hi','hi','hi','No hi','hi','No hi'};
Prediction = {'hi','No hi','hi','hi','No hi','hi','hi','hi','No hi','No hi','No hi'};
confusionchart(Actual,Prediction);

假设“No hi”对我们来说更重要,因此,我们的评估指标(召回率、精度、F1、F2、F0.5)将集中在“No hi“类上。


1.1 准确性


Accuracy = (3+5)/(3+5+2+1)
%Accuracy =0.72727


1.2 精度


Precision = 3 / (3+2)
%Precision = 0.6


1.3 召回


Recall = 3 / (3+1)
%Recall = 0.75


1.4 F1值


F1 = 2*(Precision*Recall)/(Precision+Recall)
%F1=0.6666667


1.5 F0.5值


权重比召回更注重准确性

F05 = (1+0.5^2)*(Precision*Recall)/((0.5^2)*Precision+Recall)
%F05=0.625


1.6 F2值


权重更强调召回而非准确性

F2 = (1+2^2)*(Precision*Recall)/((2^2)*Precision+Recall)
%F2=0.71429


1.7 计算评估指标的功能


您可以下载下面的函数,通过您的输入(实际和预测)在单行中计算所有评估指标

https://www.mathworks.com/matlabcentral/fileexchange/70978-summary_confusion?s_tid=prof_contriblnk


2、回归


例如,假设我们的预测结果是:

X = randn(100,5);
Actual = X*[1;0;3;0;-1] + randn(100,1);
mdl = fitlm(X,Actual);
Predicted=predict(mdl,X);
plot(X,Actual,'bo','MarkerSize',2)
hold on
plot(X,Predicted,'ko','MarkerSize',2)
title('Actual Vs Predicted')
grid on
set(gca,'Color',[1 0 1])
hold off


2.1 平均绝对误差MAE


MAE = sum(Actual-Predicted)/numel(Actual)
MAE =1.0214e-16


2.2 均方误差MSE


MSE = sum((Actual-Predicted).^2)/numel(Actual)
MSE =0.90475

2.3 均方根误差RMSE


 RMSE = sqrt(sum((Actual-Predicted).^2)/numel(Actual))
RMSE = 0.95118


二、 基于F1值执行网格搜索的多循环


例如,我们将训练具有不同超参数组合的决策树模型。

我们的数据集中有两个类别“b”和“g”,假设类“b”对我们更重要,因此我们将计算b的F1。

超参数的不同组合:

MaxNumSplit : 7,8,9,10

Minimun Leaf : 5,10,15

%导入数据
display(categories(categorical(Y)))
rng(2); % 固定算子
MdlDefault = fitctree(X,Y,'CrossVal','on');
i=1; %初始数量
for MaxNumSplit = 7:1:10
    for MinLeaf = 5:5:15
        Model = fitctree(X,Y,'MaxNumSplits',MaxNumSplit,'MinLeafSize',MinLeaf);        
        %计算每个组合的F1
        Predicted=predict(Model,X);
        confMat=confusionmat(Y,Predicted);   
        recall=confMat(1,1)/sum(confMat(1,:));
        precision=confMat(1,1)/sum(confMat(:,1));
        F1(i) = 2*recall*precision/(recall+precision);
        %记录当前的MaxNumSplit和Min LeafSize
        MaxNumSplit_r(i) = MaxNumSplit;
        MinLeafSize_r(i) = MinLeaf;
        %下一次循环
        i=i+1;
    end
end
%寻找最佳F1值
Best=Final_Result(Final_Result.F1Score==max(Final_Result.F1Score),:)
% 训练当前模型
Model = fitctree(X,Y,'MaxNumSplits',Best.MaxNumSplit,'MinLeafSize',Best.MinLeafSize); 
%绘图展示
view(Model,'mode','graph') 


三、 fitctree优化选项中的网格搜索(不能将目标函数更改为f1值)


据我所知,不能改变fitctree中的目标函数

如果您想详细了解fitctree的参数,可以参考以下文档:

https://www.mathworks.com/help/stats/fitctree.html

默认的目标函数是样本误差或交叉验证误差(准确度=1-误差),因此,如果您想将目标函数更改为F1,我建议您使用上面的循环方法。


我用同样的例子来演示如何在fitctree的优化选项中使用网格搜索。

rng(3);%固定算子
%优化变量及其范围
MaxNumSplit = optimizableVariable('MaxNumSplit',[7,10],'Type','integer');
MinLeaf = optimizableVariable('MinLeaf',[5,15],'Type','integer');
hyperparamtersRF = [MaxNumSplit;MinLeaf];
% 执行网格搜索以找到最佳组合
% verbose=1将显示表中的优化结果
Model = fitctree(X,Y,'OptimizeHyperparameters',hyperparamtersRF,'HyperparameterOptimizationOptions',opts);
Accuracy = 1-min(Model.HyperparameterOptimizationResults.Objective)

因此,从上表的结果中,我们可以注意到最佳组合是4号(MaxNumSplit=8,MinLeaf=14)。这是网格搜索后选定的模型。


四、 fitctree优化选项中的随机搜索(不能将目标函数更改为f1值)


它与网格搜索相同,不能更改目标函数,默认目标函数基于错误(精度=1-错误)。

因此,您可以考虑基于F1分数进行随机搜索的多循环方法。

如果你想在优化选项中使用随机搜索,你只需要将上面的网格搜索改为随机搜索。

rng(3);%固定算子
% 优化变量及范围
MaxNumSplit = optimizableVariable('MaxNumSplit',[7,10],'Type','integer');
MinLeaf = optimizableVariable('MinLeaf',[5,15],'Type','integer');
hyperparamtersRF = [MaxNumSplit;MinLeaf];
%执行网格搜索以找到最佳组合
opts = struct('Optimizer','randomsearch','ShowPlots',true,'AcquisitionFunctionName','expected-improvement-plus','verbose',1);
Model = fitctree(X,Y,'OptimizeHyperparameters',hyperparamtersRF,'HyperparameterOptimizationOptions',opts);
Accuracy = 1-min(Model.HyperparameterOptimizationResults.Objective)


五、 基于F1值的贝叶斯优化


本部分展示了如何实现贝叶斯优化,以使用F1值调整决策树的超参数。它还让您了解如何为贝叶斯优化创建目标函数,因此,您可以根据需要更改任何评估矩阵(准确性、精确度、召回率、F1、F2、F0.5)。

rng(3) %固定算子
% 优化变量及范围
MaxNumSplit = optimizableVariable('MaxNumSplit',[7,10],'Type','integer');
MinLeaf = optimizableVariable('MinLeaf',[5,15],'Type','integer');
hyperparamtersRF = [MaxNumSplit;MinLeaf];
%目标功能在辅助功能部分(如下)
%用贝叶斯优化器优化变量
results = bayesopt(@(params)f1_objective(params,X,Y),hyperparamtersRF,...
    'AcquisitionFunctionName','expected-improvement-plus','Verbose',1);


六、代码获取


后台**私信回复“42期”**可获取下载链接。

相关文章
|
18天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
126 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
13天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
37 2
|
1月前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
1月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
92 6
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
140 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
137 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
2月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
47 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
164 4
|
8天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
41 14