【MATLAB第39期】基于MATLAB的多元相关向量回归MRVR和快速FMRVR多输入多输出回归预测算法(多输入多输出数据)

简介: 【MATLAB第39期】基于MATLAB的多元相关向量回归MRVR和快速FMRVR多输入多输出回归预测算法(多输入多输出数据)

MATLAB第39期】基于MATLAB的多元相关向量回归MRVR和快速FMRVR多输入多输出回归预测算法(多输入多输出数据)


一、效果展示


1.FMRVR


2. # of iterations = 10
2. # of iterations = 10
历时 0.590399 秒。
**************************
下列是输出1
**************************
训练集数据的R2为:0.91476
测试集数据的R2为:0.90012
训练集数据的MAE为:107.4164
测试集数据的MAE为:118.6531
训练集数据的MBE为:-5.1681
测试集数据的MBE为:4.579
**************************
下列是输出2
**************************
训练集数据的R2为:0.97846
测试集数据的R2为:0.96061
训练集数据的MAE为:54.173
测试集数据的MAE为:75.3314
训练集数据的MBE为:-0.95966
测试集数据的MBE为:3.0532
**************************
下列是输出3
**************************
训练集数据的R2为:0.88799
测试集数据的R2为:0.91031
训练集数据的MAE为:107.6909
测试集数据的MAE为:122.2654
训练集数据的MBE为:-20.9333
测试集数据的MBE为:-26.701
=================
训练集运行结果
第1个因变量
回归误差 (RMS): 83.4517
估计噪声水平: 0.1827 (true: 0.1622)
第2个因变量
回归误差 (RMS): 95.0044
估计噪声水平: 0.0539 (true: 0.0157)
第3个因变量
回归误差 (RMS): 35.9521
估计噪声水平: 0.4115 (true: 0.4167)
=================
测试集运行结果
第1个因变量
回归误差 (RMS): 69.2293
估计噪声水平: 0.1970 (true: 0.1622)
第2个因变量
回归误差 (RMS): 24.5793
估计噪声水平: 0.0826 (true: 0.0157)
第3个因变量
回归误差 (RMS): 330.102
估计噪声水平: 0.4296 (true: 0.4167)
训练集熵损失 = 15.4545
训练集二次损失 = 335.4603
测试集熵损失 = 40.0038
测试集二次损失 = 1897.5659


2.MRVR

1. # of iterations = 10
1. # of iterations = 10
历时 34.937888 秒。
**************************
下列是输出1
**************************
训练集数据的R2为:0.78223
测试集数据的R2为:0.32016
训练集数据的MAE为:173.4356
测试集数据的MAE为:328.7633
训练集数据的MBE为:-32.7339
测试集数据的MBE为:200.1722
**************************
下列是输出2
**************************
训练集数据的R2为:0.94909
测试集数据的R2为:0.66437
训练集数据的MAE为:85.6813
测试集数据的MAE为:210.3887
训练集数据的MBE为:-22.3859
测试集数据的MBE为:94.008
**************************
下列是输出3
**************************
训练集数据的R2为:0.94538
测试集数据的R2为:0.92513
训练集数据的MAE为:88.4047
测试集数据的MAE为:96.8574
训练集数据的MBE为:0.51131
测试集数据的MBE为:-26.8483
=================
训练集运行结果
第1个因变量
回归误差 (RMS): 111.282
估计噪声水平: 0.9684 (true: 0.9488)
第2个因变量
回归误差 (RMS): 144.32
估计噪声水平: 0.7537 (true: 0.7541)
第3个因变量
回归误差 (RMS): 101.934
估计噪声水平: 0.1996 (true: 0.1938)
=================
测试集运行结果
第1个因变量
回归误差 (RMS): 240.296
估计噪声水平: 1.0334 (true: 0.9488)
第2个因变量
回归误差 (RMS): 48.7849
估计噪声水平: 0.6868 (true: 0.7541)
第3个因变量
回归误差 (RMS): 180.328
估计噪声水平: 0.2048 (true: 0.1938)
训练集熵损失 = 0.015592
训练集二次损失 = 0.032023
测试集熵损失 = 0.13245
测试集二次损失 = 0.30277


二、代码展示


数据为28输入,3输出。共600样本,训练集样本数为500,测试集样本数为100。

%该程序演示了多元相关向量回归(MRVR)和快速fMRVR算法
%=========================================================================
clear, clc, close all;
%% 参数设置
isFast      = true; % true(快速fMRVR)或false(原始MRVR)
maxIts      = 10; % EM算法的最大迭代次数
tolerance   = .1;   % 检验EM算法收敛性的容差值
%%  导入数据
res = xlsread('数据集.xlsx');
%%  划分训练集和测试集
temp = randperm(600);
P_train = res(temp(1: 500), 1 : 28)';
T_train = res(temp(1: 500), 29: 31)';
M = size(P_train, 2);
P_test = res(temp(501: end), 1 : 28)';
T_test = res(temp(501: end), 29: 31)';
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
% kernel
kernelType  = '+gauss';
kernelWidth = 1.6;
%% RMS和估计噪声水平
disp('=================')
disp('训练集运行结果')
for j = 1:size(Y,2)
  text = '第';
   fprintf([text '%d'  '个因变量\n'],j)
    fprintf('回归误差 (RMS): %g\n', ...
  sqrt(mean((T_train(:,j)-T_sim1(:,j)).^2)))
    fprintf('估计噪声水平: %.4f (true: %.4f)\n\n', ...
        sqrt(OmegaHat(j,j)), noise(j))
        disp('=================')
        disp('测试集运行结果')
        for j = 1:size(Y,2)
        end
            text = '第';
    fprintf([text '%d'  '个因变量\n'],j)
    fprintf('回归误差 (RMS): %g\n', ...
  sqrt(mean((T_test(:,j)-T_sim2(:,j)).^2)))
    fprintf('估计噪声水平: %.4f (true: %.4f)\n\n', ...
        sqrt(OmegaHat1(j,j)), noise(j))
        end
%% 度量协方差矩阵估计的性能
V = size(Y,2); % V是输出维度
temp = (Omega\OmegaHat)'; %Omega是真的,OmegaHat是估计的
temp1 = (Omega\OmegaHat1)'; %Omega是真的,OmegaHat是估计的
loss1 = trace(temp) - log(det(temp)) - V; % %熵损失
loss2 = trace((temp - eye(V))^2); % 二次损失
loss1_1 = trace(temp1) - log(det(temp1)) - V; % %熵损失
loss2_1 = trace((temp1 - eye(V))^2); % 二次损失
disp(['训练集熵损失 = ' num2str(loss1)])
disp(['训练集二次损失 = ' num2str(loss2)])
disp(['测试集熵损失 = ' num2str(loss1_1)])
disp(['测试集二次损失 = ' num2str(loss2_1)])


三、代码获取


后台私信回复“第39期”即可获取下载链接

相关文章
|
13天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
1天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
6天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
5天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
10天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
4天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
18天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
25天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。